Permeable soil and continuous vegetation in modern housing complexes: analysis of three cases in the southern sector of Santiago, Chile
DOI:
https://doi.org/10.29393/UR14-4SERF20004Keywords:
Urban vegetation , ecosystem services , modern architecture , CORVI , urban landscapeAbstract
Increasing urban vegetation is one of the strategies to mitigate the effects of climate change for several reasons, including slowing the rise in temperature in cities. This is not only about increasing the number of trees but also about finding where it is best to do so on a large scale.
The objective of this study is to demon-strate that the housing complexes of the Corporación de la Vivienda (CORVI) built at the end of the 1960s, have three particular soil conditions that not only allow for the presence of continuous masses of vegetation but can also accommodate its increase on an urban scale, and thus contribute to lowering the temperature inside the complexes.
Through a cross reading of satellite images, vegetation indices (NDVI), and soil surface temperature (LST) maps, three cases are analyzed in different communes in the south of Santiago, which have low rates of green areas per inhabitant.
The results indicate that independent of the location of the cases in the capital, the large percentages of soil that have not been sealed allow the presence of tree, shrub, and herbaceous vegetation cover concentrated between the blocks and continuous outside their boundaries. Even in the case of little vegetation but with unsealed soil, the surface temperature also decreases in its immediate context. It is important to note that these characteristics are not exclusive to these examples but are present in various forms in 105 assemblages and their 2082 blocks in Chile. This broad universe of cases makes them potentially suitable areas for increasing urban vegetation and reducing the increase in urban temperature due to climate change.
Downloads
References
Atisba. Estudios & Proyectos Urbanos. (2011). La Brecha Verde: Distribución espacial de las áreas verdes en el Gran Santiago. https://docplayer.es/62497238-La-brecha-verde-distribucion-espacial-de-las-areas-verdes-en-el-gran-santiago-estudios-proyectos-urbanos-junio-2011.html
Bustos, M (Coord). (2014). Vivienda Social en Copropiedad. Secretaría Ejecutiva Desarrollo de Barrios del Ministerio de Vivienda y Urbanismo.
Centro de Información de Recursos Naturales. (1996). Estudio agrológico Región Metropolitana. Descripciones de suelos, materiales y símbolos. https://biblioteca.inia.cl/handle/20.500.14001/55234
Chuvieco E., D. M. (1999). Short-term fire risk: foliage moisture content estimation from satellite data. Remote Sensing of Large Wildfires in the European Mediterranean Basin, 17-34.
Costas, M., y Torrent, H. (2018). Patrimonio Moderno y Proyecto Urbano: Los Colectivos 1010/1020 y los desafíos de su conservación. Arteoficio, 14, 12-17.
De Groot, R., Alkemade R., Braat, L., Hein, L., y Willemen, L. (2010). Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecological Complexity, 3(7), 260-272.
Deeb, M., Groffman, P. M., Blouin, M., Egendorf, S. P., Vergnes, A., Vasenev, V., Cao, D. L., Walsh, D., Morin, T., and Séré, G.: Using constructed soils for green infrastructure – challenges and limitations, SOIL, 6, 413–434, https://doi.org/10.5194/soil-6-413-2020, 2020.
Díaz, J., & Curiel, A. (2012). ENFRIAR las ciudades, 36–41.
Elmqvist, T., H. Setälä, S.N. Handel, S. van der Ploeg, J. Aronson, J.N. Blignaut, E. Gómez Baggethun, D.J. Nowak, J. Kronenberg y R. de Groot. (2015). Benefits of restoring ecosystem services in urban areas. Current Opinion in Environmental Sustainability, 14: 101-108.
Fan C, Myint SW, Zheng B. (2015). Measuring the spatial arrangement of urban vegetation and its impacts on seasonal surface temperatures. Progress in Physical Geography: Earth and Environment. p.199-219.
Fisher, B., Turner, K., y Morling, P. (2009). Defining and classifying ecosystem services. Ecological Economist, 68, 643-653.
Fuller, R., & Irvine, K. (2010). Interactions between people and nature in urban environments. Urban Ecology (Ecological Reviews), 134-171.
Garzón, B., Brañes, N., y Auad, A. (2004). Vegetación urbana y Hábitat popular. El caso de San Miguel de Tucumán. INVI, 18(49), 21-42.
Heaviside, Clare, Macintyre, Helen, Vardoulakis, Sotiris (2017). The Urban Heat Island: Implications for Health in a Changing Environment. Current Environmental Health Reports p. 296-305
Hobbs, K. (2020). La historia de los árboles. Blume
Hyun Woo, K. (2017). Exploring the impact of green space health on runoff reduction using NDVI. Urban Forestry and Urban Greening, 81-87.
Kaye, J., Groffman, P., Grimm, N., Baker, L., y Pouyat, R. (2006). A distinct urban biogeochemistry? Trends in ecology and evolution, 192-199.
Martín-López, B., y Montes, C. (s.f.). Funciones y servicios de los ecosistemas: una herramienta para la gestión de los espacios naturales. Urbadai, 1-20.
McKinney, M. (2008). Effects of urbanization on species richness: A review of plants and animals. Urban Ecosystems, 11, 161-176.
Montaner, J. M. (2008). Sistemas arquitectónicos contemporáneos. Gustavo Gili.
Maruani, Tseira & Amit-Cohen, Irit. (2007). Open Space Planning Models: A Review of Approaches and Methods. Landscape and Urban Planning. 81.
Lafortezza, R., J. Chen. C. Konjinendijk van den Bosch y T. B. Randrup. (2018). Nature-based solutions for resilient landscapes and cities. Environmental Research, 165, 431-441
Pérez Jara, J., y De la Barrera, F. (2021). Rol de la vegetación en el control del microclima urbano y la adaptación a los efectos del cambio climático en un barrio de San Pedro de la Paz, Chile. URBE Arquitectura, Ciudad y Territorio, 36-53.
Perry, C. (1929). Neighborhood unit. New York Regional Survey and its Environs, Vol 7, 25-47.
Pfeiffer, M., J. Perez-Quezada y M. González (2019). Capítulo 5: Suelos. p. 274-317. En: Informe País. Estado del Medio Ambiente en Chile 2018. Universidad de Chile.
Phiri, D. M. (2020). Sentinel-2 Data for Land Cover/Use Mapping: A Review. Remote Sens. Remote Sensing, 1-35.
Reyes, S. (2019). Resumen Divulgación Fondecyt 1161709. Ecosystem services approach for urban planning and management. Santiago.
Sato, A. (3 de junio de 2002). La Tercera online. La arquitectura moderna y la peste. https://www.latercera.com/que-pasa/noticia/la-arqui tectura-moderna-y-la-peste/
The Economics of Ecosystems and Biodiversity. (2011). Manual for Cities: Ecosystem Services in Urban Management. Geneva.
Stehberg, R., y Sotomayor, G. (2012). Mapocho Incaico. Boletín del Museo Nacional de Historia Natural, 61, 85-149.
Tzoulas K., Korpela K., Venn S., Yli-Pelkonen V., Ka?mierczak A., Niemela J., y James P. (2007). Promoting ecosystem and human health in urban areas using Green Infrastructure: A literature review. Landscape and Urban Planning, 3(81), 167-178.
Vásquez, A. (2016). Infraestructura verde, servicios ecosistémicos y sus aportes para enfrentar el cambio climático en ciudades: el caso del corredor ribereño del río Mapocho en Santiago de Chile. Revista de Geografía Norte Grande, 63, 63-86.
Yang J.L. y G.L. Zhang. (2015). Formation, characteristics and eco-environmental implications of urban soils – A review. Soil Science and Plant Nutrition, 61, 30–46.
Wang, J., Endreny, T., y Nowak, D. (2008): Mechanistic Simulation of Tree Effects in an Urban Water Balance Model 1. Journal of the American Water Resources Association, 44(1), 75–85.
Yanes, J. (06 de octubre de 2020). Open Mind BBVA. https://www.bbvaopenmind.com/ciencia/medioambiente/plantar-arboles-una-estrategia-controvertida-contra-el-cambio-climatico/
Published
How to Cite
Issue
Section
Copyright (c) 2022 Rodrigo Eduardo Gertosio Swanston, Francisca Pantoja Lira
This work is licensed under a Creative Commons Attribution 4.0 International License.
Revista URBE. Arquitectura, Ciudad y Territorio tiene licencia de Creative Commons Attribution 4.0 International (CC BY 4.0) y debe citarse correctamente.