Las filosofías de la ciencia de Thomas Kuhn: del ciclo revolucionario al árbol evolutivo
DOI:
https://doi.org/10.29393/CF38-1JMFC10001Palavras-chave:
árbol evolutivo, inconmesurabilidad, Kuhn, ciclo revolucionario, simbiogénesisResumo
En este artículo exploro la transición en el pensamiento de Kuhn hacia una filosofía evolutiva de la ciencia a partir de una filosofía histórica de la ciencia. Esta primera filosofía de la ciencia de Kuhn se ha representado repetidas veces como un proceso cíclico en el que una antigua ciencia normal da lugar a un nueva ciencia normal a través de una revolución científica o un cambio de paradigma. Más tarde en su carrera Kuhn rechaza la filosofía histórica de la ciencia y se vuelca hacia una filosofía evolutiva. En lugar de entender el progreso científico como un levantamiento revolucionario, lo concibe ahora como la creciente especialización de las disciplinas científicas. De ahí que, en contraste con un ciclo revolucionario, un árbol evolutivo representa mejor la filosofía de la ciencia madura de Kuhn acerca de como progresa de la ciencia.
Downloads
Referências
Aderem, A. (2005). Systems biology: Its practice and challenges. Cell, *121*(4), 511–513. https://doi.org/10.1016/j.cell.2005.04.024
Aggarwal, K., & Lee, H. K. (2003). Functional genomics and proteomics as a foundation for systems biology. Briefings in Functional Genomics and Proteomics, *2*(3), 175–184. https://doi.org/10.1093/bfgp/2.3.175
Auletta, G. (2010). A paradigm shift in biology? Information, *1*(1), 28–59. https://doi.org/10.3390/info1010028
Baluška, F., & Witzany, G. (2013). At the dawn of a new revolution in life sciences. World Journal of Biological Chemistry, *4*(1), 13–15. https://doi.org/10.4331/wjbc.v4.i1.13
Bertalanffy, L. von. (1974). General systems theory: Foundations, development, applications (Rev. ed.). Braziller.
Bird, A. (1999). Scientific revolutions and inference to the best explanation. Danish Yearbook of Philosophy, *34*(1), 25–42. https://doi.org/10.1163/24689300-03401003
Bird, A. (2005). Naturalizing Kuhn. Proceedings of the Aristotelian Society, *105*(1), 99–117. https://doi.org/10.1111/j.0066-7372.2004.00100.x
Brandon, R. N. (1997). Does biology have laws? The experimental evidence. Philosophy of Science, *64*(4), S444–S457. https://doi.org/10.1086/392620
Carey, N. (2012). The epigenetics revolution: How modern biology is rewriting our understanding of genetics, disease, and inheritance. Columbia University Press.
Coleman, W. (1977). Biology in the nineteenth century: Problems of form, function, and transformation. Cambridge University Press.
Commoner, B. (1961). In defense of biology. Science, *133*(3466), 1745–1748. https://doi.org/10.1126/science.133.3466.1745
Crick, F. (1981). Life itself: Its origin and nature. Simon and Schuster.
Deans, C., & Maggert, K. A. (2015). What do you mean, "epigenetic"? Genetics, *199*(4), 887–896. https://doi.org/10.1534/genetics.114.173492
Elsasser, W. M. (1998). Reflections on a theory of organisms: Holism in biology. Johns Hopkins University Press.
Giere, R. N. (2006). Scientific perspectivism. University of Chicago Press.
Greene, C. S., Tan, J., Ung, M., Moore, J. H., & Cheng, C. (2014). Big data bioinformatics. Journal of Cellular Physiology, *229*(12), 1896–1900. https://doi.org/10.1002/jcp.24662
Gregory, A. (2013). Kuhn and taxonomies of history. Philosophy Study, *3*(5), 412–430.
Griffiths, P. E., & Stotz, K. (2006). Genes in the postgenomic era. Theoretical Medicine and Bioethics, *27*(6), 499–521. https://doi.org/10.1007/s11017-006-9020-y
He, L., & Hannon, G. J. (2004). MicroRNAs: Small RNAs with a big role in gene regulation. Nature Reviews Genetics, *5*(7), 522–531. https://doi.org/10.1038/nrg1379
Heard, E., & Martienssen, R. A. (2014). Transgenerational epigenetic inheritance: Myths and mechanisms. Cell, *157*(1), 95–109. https://doi.org/10.1016/j.cell.2014.02.045
Hopkin, K. (2009). The evolving definition of a gene. BioScience, *59*(11), 928–931. https://doi.org/10.1525/bio.2009.59.11.2
Hoyningen-Huene, P. (2015). Kuhn’s development before and after Structure. In W. J. Devlin & A. Bokulich (Eds.), Kuhn’s Structure of scientific revolutions—50 years on (pp. 185–195). Springer. https://doi.org/10.1007/978-3-319-13383-6_13
Kellenberger, E. (2004). The evolution of molecular biology. EMBO Reports, *5*(6), 546–549. https://doi.org/10.1038/sj.embor.7400172
Kellert, S. H., Longino, H. E., & Waters, C. K. (Eds.). (2006). Scientific pluralism. University of Minnesota Press.
Kitano, H. (2002). Systems biology: A brief overview. Science, *295*(5560), 1662–1664. https://doi.org/10.1126/science.1069492
Klein, M. J., Shimony, A., & Pinch, T. J. (1979). Paradigm lost? A review symposium. Isis, *70*(3), 429–440. https://doi.org/10.1086/352336
Kuhn, T. S. (1970). The structure of scientific revolutions (2nd ed.). University of Chicago Press.
Kuhn, T. S. (1977). The essential tension: Selected studies in scientific tradition and change. University of Chicago Press.
Kuhn, T. S. (1987). *Black-body theory and the quantum discontinuity, 1894–1912* (2nd ed.). University of Chicago Press.
Kuhn, T. S. (2000). The road since 'Structure': Philosophical essays, 1970–1993, with an autobiographical interview. University of Chicago Press.
Marcum, J. A. (2008). Does systems biology represent a Kuhnian paradigm shift? New Phytologist, *179*(3), 587–589. https://doi.org/10.1111/j.1469-8137.2008.02526.x
Marcum, J. A. (2015). Thomas Kuhn’s revolutions: A historical and an evolutionary philosophy of science? Bloomsbury Publishing.
Marcum, J. A. (2017). Evolutionary philosophy of science: A new image of science and stance towards general philosophy of science. Philosophies, *2*(4), 23. https://doi.org/10.3390/philosophies2040023
Marcum, J. A. (2018). Revolution or evolution in science? A role for the incommensurability thesis? In M. Mizrahi (Ed.), The Kuhnian image of science: Time for a decisive transformation? (pp. 155–173). Rowman & Littlefield.
Margulis, L. (1998). Symbiotic planet: A new look at evolution. Basic Books.
Marx, V. (2013). Biology: The big challenges of big data. Nature, *498*(7453), 255–260. https://doi.org/10.1038/498255a
Morange, M. (1998). A history of molecular biology. Harvard University Press.
Politi, V. (2018). Scientific revolutions, specialization and the discovery of the structure of DNA: Toward a new picture of the development of the sciences. Synthese, *195*(6), 2267–2293. https://doi.org/10.1007/s11229-017-1336-9
Portin, P. (2002). Historical development of the concept of the gene. Journal of Medicine and Philosophy, *27*(3), 257–286. https://doi.org/10.1076/jmep.27.3.257.2980
Portin, P. (2015). The development of genetics in the light of Thomas Kuhn’s theory of scientific revolutions. Recent Advances in DNA & Gene Sequences, *9*(1), 14–25. https://doi.org/10.2174/2352092209666150223113217
Portin, P., & Wilkins, A. (2017). The evolving definition of the term ‘gene’. Genetics, *205*(4), 1353–1364. https://doi.org/10.1534/genetics.116.196956
Psillos, S. (2012). What is general philosophy of science? Journal for General Philosophy of Science, *43*(1), 93–103. https://doi.org/10.1007/s10838-012-9183-3
Psillos, S. (2016). Having science in view: General philosophy of science and its significance. In P. Humphreys (Ed.), The Oxford handbook of philosophy of science (pp. 137–162). Oxford University Press. https://doi.org/10.1093/oxfordhb/9780199368815.013.29
Reingold, N. (1980). Through paradigm-land to a normal history of science. Social Studies of Science, *10*(4), 475–496. https://doi.org/10.1177/030631278001000404
Reisch, G. A. (1991). Did Kuhn kill logical empiricism? Philosophy of Science, *58*(2), 264–277. https://doi.org/10.1086/289615
Rheinberger, H.-J. (2008). What happened to molecular biology? BioSocieties, *3*(3), 303–310. https://doi.org/10.1017/S1745855208006205
Ruse, M. E. (1971). Reduction, replacement, and molecular biology. Dialectica, *25*(1), 39–72. https://doi.org/10.1111/j.1746-8361.1971.tb00593.x
Sabina, L. (2019). The challenges of big data biology. eLife, *8*, e47381. https://doi.org/10.7554/eLife.47381
Strohman, R. C. (1997). The coming Kuhnian revolution in biology. Nature Biotechnology, *15*(3), 194–200. https://doi.org/10.1038/nbt0397-194
Strohman, R. C. (2002). Maneuvering in the complex path from genotype to phenotype. Science, *296*(5568), 701–703. https://doi.org/10.1126/science.1070533
Trewavas, A. (2006). A brief history of systems biology. The Plant Cell, *18*(10), 2420–2430. https://doi.org/10.1105/tpc.106.042267
Vineis, P. (2010). The research program in epigenetics: The birth of a new paradigm. In A. G. Haslberger & S. Gressler (Eds.), Epigenetics and human health: Linking hereditary, environmental and nutritional aspects (pp. 1–6). Wiley-VCH.
Westerhoff, H. V., & Palsson, B. O. (2004). The evolution of molecular biology into systems biology. Nature Biotechnology, *22*(10), 1249–1252. https://doi.org/10.1038/nbt1020
Wheeler, D. A., & Wang, L. (2013). From human genome to cancer genome: The first decade. Genome Research, *23*(7), 1054–1062. https://doi.org/10.1101/gr.157602.113
Publicado
Como Citar
Edição
Seção
Copyright (c) 2020 Universidad de Concepción

Este trabalho está licensiado sob uma licença Creative Commons Attribution 4.0 International License.

