Fuerza de unión por micro-expulsión del sellador de conductos radiculares a base de minerales en conductos con diferentes ahusamientos.

Autores/as

  • Nunna Vasavi Department of Conservative Dentistry & Endodonics GITAM Dental College & Hospital, Visakhapatnam, India.
  • Kantheti Sirisha Department of Conservative Dentistry & Endodonics GITAM Dental College & Hospital, Visakhapatnam, India.

DOI:

https://doi.org/10.17126/joralres.2021.015

Resumen

Objetivo: El objetivo de este estudio fue evaluar la fuerza de unión por micro-expulsión de un sellador de conductos radiculares de base mineral, BioRoot RCS, en conductos preparados por sistemas rotativos K3XF con dos conos diferentes. Material y Métodos: En este estudio se utilizaron 80 incisivos centrales superiores libres de caries. Las muestras se distribuyeron en cuatro grupos (n = 20) de acuerdo al sellador del conducto radicular y al cono de los instrumentos rotativos. Las muestras se obturaron mediante la técnica de obturación de un solo cono. De cada raíz se recogieron rodajas de 1 mm de grosor en los tercios coronal, medio y apical utilizando un micrótomo de tejido duro con refrigeración continua por agua. Posteriormente, se realizó una prueba de expulsión para estas secciones utilizando una máquina de prueba universal (INSTRON 8801) a una velocidad del cabezal transversal de 1mm/min. Se utilizó el análisis de varianza unidireccional (ANOVA) para comparar las resistencias de la unión dentro de los grupos y el análisis post hoc multiple de Tukey se utilizó para la comparación por pares de las resistencias de la unión. Resultados: AH Plus exhibió una fuerza de unión de micro-expulsión más alta que BioRootRCS, aunque no difirieron significativamente (p>0,05). La preparación de los conductos radiculares con instrumentos rotativos ahusados al 6% mostró una fuerza de unión superior al 4%, aunque no difirieron significativamente (p>0,05). Conclusión: No hubo diferencias significativas entre los valores de fuerza de unión de micro-expulsión de BioRoot RCS y AH Plus. Los valores de la fuerza de unión fueron más altos en canales cónicos al 6% que en canales al 4%, aunque la diferencia no fue significativa estadísticamente.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

[1]. James DJ. Root canal filling materials. Ingle’ s Endodontics, 6th Ed, CBS publishers, New Delhi, 2013.

[2]. Loushine BA, Bryan TE, Looney SW, Gillen BM, Loushine RJ, Weller RN, Pashley DH, Tay FR. Setting properties and cytotoxicity evaluation of a premixed bioceramic root canal sealer. J Endod. 2011;37:673-7.

[3]. Mestieri LB, Zaccara IM, Pinheiro LS, Barletta FB, Kopper PM, Grecca FS. Cytocompatibility and cell proliferation evaluation of calcium phosphate-based root canal sealers. Restor Dent Endod. 2019;45:e2

[4]. Oltra E, Cox TC, LaCourse MR, Johnson JD, Paranjpe A. Retreatability of two endodontic sealers, EndoSequence BC Sealer and AH Plus: a micro-computed tomographic comparison. Restor Dent Endod. 2017;42:19-26.

[5]. Xuereb M, Vella P, Damidot, Sammul CV and Camilleri J. In situ assessment of the setting of tricalcium silicate-based sealers using a dentin pressure model. J Endod. 2015;41:111-24.

[6]. Dimitrova- Nakov S, Uzunoglu E, Ardila-Osorio H, Baudry A, Richard G, Kellermann 0, Goldberg M. In vitro bioactivity of BiorootTM RCS, via A4 mouse pulpal stem cells. Dent Mater. 2015;31:1290-7.

[7]. Silva GF, Bosso R, Ferino RV, Tanomaru-Filho M, Bernardi MI, Guerreiro- Tanomaru JM, Cerri PS. Microparticulated and nanoparticulated zirconium oxide added to calcium silicate cement: evaluation of physicochemical and biological properties. J Biomed Mater Res Part A. 2014;102: 4336-45.

[8]. Li X, Yoshihara K, De Munck J, Cokic S, Pongprueksa P, Putzeys E, Pedano M, Chen Z, Van Landuyt K, Van MeerbeekB. Modified tricalcium silicate cement formulations with added zirconium oxide. Clin Oral Invest. 2017;21:895-905.

[9]. Camps J, Jeanneau C, El Ayachi I, Laurent P, About I. Bioactivity of a calcium silicate—based endodontic cement (BioRoot RCS): interactions with human periodontal ligament cells in vitro. J Endod. 2015;41:1469-73.

[10]. Gogos C, Economides N, Stavrianos C, Kolokouris and Kokorikos I. Adhesion of a new methacrylate resin based sealer to human dentine. J Endod. 2004;238-40.

[11]. Soares CJ, Santana FR, Castro CG, Santos- Filho PC, Soares PV, Qian F, Armstrong SR. Finite element analysis and bond strength of a glass post to intraradicular dentin: comparison between microtensile and push-out tests. Dental Materials. 2006;24:1405-11.

[12]. Ersahan S, Aydin C. Dislocation resistance of iRoot SP, a calcium silicate— based sealer, from radicular dentine. J Endod. 2010;36:2000-2.

[13]. Sagsen B, Ustun Y, Demirbuga S, Pala K. Push-out bond strength of two new calcium silicate-based endodontic sealers to root canal dentine. Int Endod J. 2011;44:1088-91.

[14]. Shokouhinejad N, Gorjestani H, Nasseh AA, Hoseini A, Mohammadi M, Shamshiri AR. Push-out bond strength of gutta-percha with a new bioceramic sealer in the presence or absence of smear layer. Aust Endod J. 2013;39:102-6.

[15]. Nagas E, Cehreli Z, Uyanik MO, Durmaz V. Bond strength of a calcium silicate-based sealer tested in bulk or with different main core materials. Braz Oral Res. 2014;28:1-7.

[16]. Oliveira DS, Cardoso ML, Queiroz TF, Silva EJN, Souza EM. Suboptimal push-out bond strengths of calcium silicate-based seaters. Int Endod J. 2016;49:796-801.

[17]. Camargo RV, Silva-Sousa YTC, Rosa RPFD, Mazzi-Chaves JF, Lopes FC, Steier L, Sousa-Neto MD. Evaluation of the physicochemical properties of silicone- and epoxy resin-based root canal sealers. Braz Oral Res. 2017;31:1-9.

[18]. Orstavik D, Nordahl I, Tibballs JE. Dimensional change following setting of root canal sealer materials. Dent Mater. 2001;17:512-9.

[19]. Fisher M, Berzins D, Bahcall J. An In Vitro Comparison of Bond Strength of Various Obturation Materials to Root Canal Dentin Using a Push-Out Test Design. J Endod. 2007;33:856-8.

[20]. Osiri S, Banomvonq D, Sattabanasuk V, Yanpiset K. Root reinforcement after obturation with calcium silicate-based sealer and modified gutta-percha cone. J Endod. 2018;44:1843-8.

[21]. Zhang W, Li Z, Peng B. Assessment of a new root canal sealer’s apical sealing ability. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;107(6):79 -82.

[22]. Siboni F, Taddei P, Zamparini F, Prati C, Gandolfi MG. Properties of BioRoot RCS, a tricalcium silicate endodontic sealer modified with povidone and polycarboxylate. Int Endod J. 2017 ;50 Suppl 2:e120-e136.

[23]. Nagas E, Altundasar E, Ahmet S, Ankara T. The effect of master point taper on bond strength and apical sealing ability of different root canal sealers. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;107:61-64.

[24]. Neelakantan P, Subbarao C, Subbarao CV, De- Deus G, Zehnder M. The impact of root dentine conditioning on sealing ability and push-out bond strength of an epoxy resin root canal sealer. Int Endod J. 2011;44:491-8.

[25]. Gustavo D, Accorsi MT, Carvalho e Silva L, Carlos Augusto L, Silva D. Self adjusting file cleaning-shaping-irrigation system improves root filling bond strength. J Endod. 2013;39:254-7.

[26]. Neelakantan P, Sharma S, Shemesh H, Wesselink PR. Influence of irrigation sequence on the adhesion of root canal seaters to dentin: a fourier transform infrared spectroscopy and push-out bond strength analysis. J Endod. 2015;41:1108-11.

[27]. Paqué F, Luder HU, Sener B, Zehnder M. Tubular sclerosis rather than the smear layer impedes dye penetration into the dentine of endodontically instrumented root canals. Int Endod J. 2006;39:18-25.

[28]. Mjor IA, Smith MR, Ferrari M, Mannocci F. The structure of dentine in the apical region of human teeth. Int Endod J. 2001;34:346-53.

[29]. Torabinejad M, Khademi AA, Babagoli J, Cho Y, Johnson WB, Bozhilov K, et al. A new solution for the removal of the smear layer. J Endod. 2003;29:170-5.

Publicado

2021-02-28

Cómo citar

Vasavi, N., & Sirisha, K. . (2021). Fuerza de unión por micro-expulsión del sellador de conductos radiculares a base de minerales en conductos con diferentes ahusamientos. Journal of Oral Research, 10(1), 1-7. https://doi.org/10.17126/joralres.2021.015