Síntesis, caracterización y evaluación de cemento experimental de silicato de calcio a base de nanohidroxiapatita como material de reparación radicular.

Autores/as

  • Simin Sharifi Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. http://orcid.org/0000-0002-3020-3779
  • Solmaz Maleki-Dizaj Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. http://orcid.org/0000-0003-4759-7222
  • Shahriar Shahi Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. | Departnent of Endodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran. http://orcid.org/0000-0003-4616-5145
  • Mahsa Mahdilouy Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. | Departnent of Endodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran.

DOI:

https://doi.org/10.17126/joralres.2022.007

Resumen

Objetivo: Este estudio tuvo como objetivo preparar un nuevo material de reparación de raíces que incluye cemento Portland, óxido de bismuto y nano-hidroxiapatita y analizar sus propiedades fisicoquímicas y sus efectos sobre la proliferación y diferenciación de células madre de pulpa dental humana.
Material y Métodos: El óxido de bismuto como compo-nente radiopaco y las partículas de nano-hidroxiapatita se agregaron al cemento Portland blanco en una proporción en peso del 20 % y el 5 %, respectivamente. La caracterización del cemento preparado se realizó utilizando métodos con-vencionales. Para examinar la bioactividad de este nuevo material, se utilizó la espectroscopia de absorción atómica para investigar la velocidad de disolución de los iones de calcio en medio fluido corporal simulado. La viabilidad de las células madre de pulpa dental humana se evaluó mediante un ensayo MTT después de 1, 3 y 7 días. El potencial odontogénico de esta sustancia se evaluó midiendo la actividad de la fosfatasa alcalina y la tinción con rojo de alizarina S.
Resultados: Con base en los resultados de bioactividad, el cemento presentó alta bioactividad, corroborando suficientemente con los patrones de liberación de calcio. La viabilidad celular aumentó significativamente en el nuevo material de reparación de raíces que contenía nanopartículas de hidroxiapatita después de 3 y 7 días (p<0,05).
Conclusión: Además, la actividad de la fosfatasa alcalina aumentó durante 7 días en todos los grupos experimentales. El nuevo cemento que contiene partículas de nanohidroxiapatita podría ser un buen material de reparación radicular.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

[1]. Sun Q, Gustin JW, Tian FC, Sidow SJ, Bergeron BE, Ma JZ, Tay FR. Effects of pre-mixed hydraulic calcium silicate putties on osteogenic differentiation of human dental pulp stem cells in vitro. J Dent. 2021;108:103653. doi: 10.1016/j.jdent.2021.103653. PMID: 33798641.

[2]. Epple M. Review of potential health risks associated with nanoscopic calcium phosphate. Acta biomaterialia. 2018; 77: 1-14.

[3]. Elkassas D, Arafa A. The innovative applications of therapeutic nanostructures in dentistry. Nanomedicine: Nanotechnology, Biology and Medicine. 2017; 13(4): 1543-62.

[4]. Kim MY, Kwon HK, Choi CH, Kim BI. Combined effects of nano-hydroxyapatite and NaF on remineralization of early caries lesion. Key Engineering Materials. 2007; 330-332 (II):1347-50. doi.org/10.4028/0-87849-422-7.1347

[5]. Li L, Pan H, Tao J, Xu X, Caiyun Mao C, Gub X, Tang R. Repair of enamel by using hydroxyapatite nanoparticles as the building blocks. J Mater Chem. 2008;18(34): 4079-84

[6]. Barot T, Rawtani D, Kulkarni P. Nanotechnology-based materials as emerging trends for dental applications. Rev Adv Mater Sci. 2021; 60:173–89

[7]. Maleki Dizaj S, Barzegar-Jalali M, Zarrintan MH, Adibkia K, Lotfipour F. Calcium carbonate nanoparticles as cancer drug delivery system. Expert Opin Drug Deliv. 2015;12(10):1649-60. doi: 10.1517/17425247.2015.10 49530. PMID: 26005036.

[8]. Wongkornchaowalit N, Lertchirakarn V. Setting time and flowability of accelerated Portland cement mixed with polycarboxylate superplasticizer. J Endod. 2011;37(3):387-9. doi: 10.1016/j.joen.2010.11.039. PMID: 21329827.

[9]. Chang SW, Lee SY, Ann HJ, Kum KY, Kim EC. Effects of calcium silicate endodontic cements on biocompatibility and mineralization-inducing potentials in human dental pulp cells. J Endod. 2014;40(8):1194-200. doi: 10.1016/j.joen.2014.01.001. PMID: 25069932.

[10]. Ahmadian E, Shahi S, Yazdani J, Maleki Dizaj S, Sharifi S. Local treatment of the dental caries using nanomaterials. Biomed Pharmacother. 2018;108:443-447. doi: 10.1016/j.biopha.2018.09.026. PMID: 30241047.

[11]. Rahimi S, Salarinasab S, Ghasemi N, Rahbarghazi R, Shahi S, Salem Milani A, Divband B, Davoudi P. In vitro induction of odontogenic activity of human dental pulp stem cells by white Portland cement enriched with zirconium oxide and zinc oxide components. J Dent Res Dent Clin Dent Prospects. 2019;13(1):3-10. doi: 10.15171/joddd.2019.001. PMID: 31217912; PMCID: PMC6571518.

[12]. Samiei M, Shirazi S, Pournaghi Azar F, Fathifar Z, Ghojazadeh M, Alipour M. “The Effect of Different Mixing Methods on the Properties of Calcium-Enriched Mixture Cement: A Systematic Review of in Vitro Studies”. Iranian Endod J. 2019; 14(4): 240-6. doi:10.22037/iej.v14i4.25126.

[13]. Chang SW, Bae WJ, Yi JK, Lee S, Lee DW, Kum KY, Kim EC. Odontoblastic Differentiation, Inflammatory Response, and Angiogenic Potential of 4 Calcium Silicate-based Cements: Micromega MTA, ProRoot MTA, RetroMTA, and Experimental Calcium Silicate Cement. J Endod. 2015;41(9):1524-9. doi: 10.1016/j.joen.2015.04.018. PMID: 26093472.

[14]. Antonijevi? D, Despotovi? A, Bio?anin V, Miloševi? M, Triši? D, Lazovi? V, Zogovi? N, Milašin J, Ili? D. Influence of the addition of different radiopacifiers and bioactive nano-hydroxyapatite on physicochemical and biological properties of calcium silicate based endodontic ceramic. Ceram Int. 2021; 47(20): 28913-23.

[15]. Holland R, de Souza V, Murata SS, Nery MJ, Bernabé PF, Otoboni Filho JA, Dezan Júnior E. Healing process of dog dental pulp after pulpotomy and pulp covering with mineral trioxide aggregate or Portland cement. Braz Dent J. 2001;12(2):109-13. PMID: 11445912.

[16]. Shahi S, Özcan M, Maleki Dizaj S, Sharifi S, Al-Haj Husain N, Eftekhari A, Ahmadian E. A review on potential toxicity of dental material and screening their biocompatibility. Toxicol Mech Methods. 2019;29(5):368-377. doi: 10.1080/ 15376516.2019.1566424. PMID: 30642212.

[17]. Avranas A, Stalidis G, Ritzoulis G. Demulsification rate and zeta potential of O/W emulsions. Colloid & Polymer Sci. 1988; 266: 937–40. (1988). doi.org/10.1007/BF01410850

[18]. Ersoy B, Sariisik A, Dikmen S, Sariisik G. Characterization of acidic pumice and determination of its electrokinetic properties in water. Powder Technology. 197;(2010):129–135.

[19]. Yilmaz B. Effects of molecular and electrokinetic properties of pozzolans on hydration. ACI Mat J. 2009; 106(2): 128-137.

[20]. Shahi S, Yavari HR, Rahimi S, Eskandarinezhad M, Shakouei S, Unchi M. Comparison of the sealing ability of mineral trioxide aggregate and Portland cement used as root-end filling materials. J Oral Sci. 2011; 53(4):517-22. doi: 10.2334/josnusd.53.517. PMID: 22167039.

[21]. Coomaraswamy KS, Lumley PJ, Hofmann MP. Effect of bismuth oxide radioopacifier content on the material properties of an endodontic Portland cement-based (MTA-like) system. J Endod. 2007; 33(3):295-8. doi: 10.1016/j.joen.2006.11.018. PMID: 17320718.

[22]. Húngaro Duarte MA, de Oliveira El Kadre GD, Vivan RR, Guerreiro Tanomaru JM, Tanomaru Filho M, de Moraes IG. Radiopacity of portland cement associated with different radiopacifying agents. J Endod. 2009; 35(5):737-40. doi: 10.1016/j.joen.2009.02.006. PMID: 1941 0095.

[23]. Bhardwaj A, Bhardwaj A, Misuriya A, Maroli S, Manjula S, Singh AK. Nanotechnology in dentistry: Present and future. J Int Oral Health. 2014; 6(1):121-6. PMID: 24653616; PMCID: PMC3959150.

[24]. Jandt KD, Watts DC. Nanotechnology in dentistry: Present and future perspectives on dental nanomaterials. Dent Mater. 2020; 36(11):1365-1378. doi: 10.1016/j.dental.2020.08.006. PMID: 32981749; PMCID: PMC7516471.

[25]. Pepla E, Besharat LK, Palaia G, Tenore G, Migliau G. Nano-hydroxyapatite and its applications in preventive, restorative and regenerative dentistry: a review of literature. Ann Stomatol (Roma). 2014; 5(3):108-14. PMID: 25506416; PMCID: PMC4252862.

[26]. Du M, Chen J, Liu K, Xing H, Song C. Recent advances in biomedical engineering of nano-hydroxyapatite including dentistry, cancer treatment and bone repair. Composites Part B: Engineering. 2021; 215 (2021):108790.

[27]. Hernandez EP, Botero TM, Mantellini MG, McDonald NJ, Nör JE. Effect of ProRoot MTA mixed with chlorhexidine on apoptosis and cell cycle of fibroblasts and macrophages in vitro. Int Endod J. 2005; 38(2):137-43. doi: 10.1111/j.1365-2591.2004.00922.x. PMID: 15667636.

[28]. Min KS, Kim HI, Park HJ, Pi SH, Hong CU, Kim EC. Human pulp cells response to Portland cement in vitro. J Endod. 2007;33(2):163-6. doi: 10.1016/j.joen.2006.07.022. PMID: 17258637.

[29]. Rodrigues EM, Cornélio ALG, Mestieri LB, Fuentes ASC, Salles LP, Rossa-Junior C, Faria G, Guerreiro-Tanomaru JM, Tanomaru-Filho M. Human dental pulp cells response to mineral trioxide aggregate (MTA) and MTA Plus: cytotoxicity and gene expression analysis. Int Endod J. 2017;50(8):780-789. doi: 10.1111/iej.12683. PMID: 27520288.

[30]. Kim EC, Lee BC, Chang HS, Lee W, Hong CU, Min KS. Evaluation of the radiopacity and cytotoxicity of Por-tland cements containing bismuth oxide. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;105(1):e54-7. doi: 10.1016/j.tripleo.2007.08.001. PMID: 18155604.

[31]. Alipour M, Firouzi N, Aghazadeh Z, Samiei M, Montazersaheb S, Khoshfetrat AB, Aghazadeh M. The osteogenic differentiation of human dental pulp stem cells in alginate-gelatin/Nano-hydroxyapatite microcapsules. BMC Biotechnol. 2021;21(1):6. doi: 10.1186/s12896-020-00666-3. PMID: 33430842; PMCID: PMC7802203.

[32]. Lee SY, Min KS, Choi GW, Park JH, Park SH, Lee SI, Kim EC. Effects of simvastain and enamel matrix derivative on Portland cement with bismuth oxide-induced growth and odontoblastic differentiation in human dental pulp cells. J Endod. 2012;38(3):405-10. doi: 10.1016/j.joen.2011.12.025. PMID: 22341085.

[33]. Campodoni E, Montanari M, Artusi C, Bassi G, Furlani F, Montesi M, Panseri S, Sandri M, Tampieri A. Calcium-Based Biomineralization: A Smart Approach for the Design of Novel Multifunctional Hybrid Materials J Compos Sci. 2021; 5(10):278. doi.org/10.3390/jcs5100278

Publicado

2022-02-28

Cómo citar

Sharifi, S. ., Maleki-Dizaj, S. ., Shahi, S. ., & Mahdilouy, M. . (2022). Síntesis, caracterización y evaluación de cemento experimental de silicato de calcio a base de nanohidroxiapatita como material de reparación radicular. Journal of Oral Research, 11(1), 1-13. https://doi.org/10.17126/joralres.2022.007

Número

Sección

Articles