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ABSTRACT

Spent mushroom substrate of different edible mushrooms is a nutrient-rich biomass associated 
with mycelial metabolic activity in the growth substrate. The objective of this study was to evaluate 
the changes in the nutritional content and physical properties of a sugarcane bagasse substrate 
after the cultivation of the edible mushrooms Pleurotus ostreatus and Lentinula edodes. Strains of 
both species were first propagated in potato dextrose agar culture medium, then in wheat grains, 
and finally inoculated in sterile sugarcane bagasse. Determinations of macronutrients, pH and C:N 
ratio were carried out at 0, 30 and 60 days after mushroom mycelium growth in the bagasse-based 
substrate. After 30 and 60 days of inoculation, nitrogen (N), phosphorous (P) and potassium (K) 
recorded increases of 0.26%, 0.06% and 0.14 with Pleurotus ostreatus, and increases of 0.33%, 0.05%, 
and 0.11% with Lentinula edodes, respectively. Regarding micronutrients, there was an increase in 
Calcium (Ca) and Sulphur (S) in both substrates, but amounts varied during the time evaluated. 
Additionally, an important increase in hydrogen ion concentration was observed when both species 
were inoculated, with final values of 4.26 and 3.9 for Pleurotus ostreatus and Lentinula edodes species, 
respectively. In conclusion, this biomass presents a high percentage of the essential micro and macro 
elements required in a fertilizer.
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INTRODUCTION

Lentinula edodes and Pleurotus ostreatus, species 
of the Basidiomycota phylum, are among the 
five	 species	 with	 the	 highest	 market	 demand	
for	edible	fungi	in	the	world	(Royse	et	al.,	2017).	
Mushroom sporocarps are characterized by 
their edible potential as they are a rich source 
of	protein	with	high	contents	of	essential	amino	
acid, vitamin (B1, B2, B12, C, D, E), minerals, 
water	and	fiber	as	well	as	low	levels	of	fat	(Heleno	
et	 al.,	 2010;	 Ouzouni	 et	 al.,	 2009). In addition, 
sporocarps of many mushroom species are 
used for their medicinal value because of their 
active	 biological	 compounds	 with	 antibacterial,	
antifungal, antiparasitic, antidiabetic, 
antiallergic, anticholesterolemic, antioxidant, 
immunomodulating, and antitumor properties 
(Chang	and	Wasser,	 2012;	 Sari	 et	 al.,	 2016).	The	
world	 market	 for	 edible	 mushrooms	 was	 US	 $	
42,419	billion	dollars	 in	2018,	but	 is	expected	 to	
grow	to	US	$	62,193	billion	dollars	in	2023	(https://
www.knowledge-sourcing.com/products/
global-edible-mushrooms-market-industry-
trends-opportunities-and-forecasts-to-2023). This	
will	 result	 in	 an	 increased	 production	 of	 spent	
mushroom substrate (SMS) or spent mushroom 
compost	 (SMC),	which	 is	a	by-product	after	 the	
harvest	of	edible	mushrooms	(Owaid	et	al.,	2017).	
This	 compost	 is	 made	 from	 agricultural	 waste	
such	 as	 tea	 leaves,	 banana,	 cotton,	 corn	 husk,	
coffee	husks,	sugarcane	bagasse,	cereal	straw,	and	
wood	sawdust.	In	the	cultivation	of	Agaricus spp., 
horse	manure,	chicken	manure,	urea,	ammonium	
sulfate, blood meal, grape pomace, molasses, 
brewers’	 grain	 and	 feather	 flour	 are	 added	 as	
supplements to increase soil nitrogen content 
(Stamets,	1983;	Kamthan	and	Tiwari,	2017;	Pardo-
Jimenez	et	al.,	2016;	Pardo-Jimenez	et	al.,	2018).	
These	 substrates	 have	 high	 content	 of	

polysaccharide, vitamin, and trace elements, 
such as Fe, Ca, Zn and Mg	 (Medina	et	al.,	2009;	
Zhu	 et	 al.,	 2012).	 They	 also	 have	 extracellular	
enzymes produced by edible fungi to carry out 
efficient	 lignin	degradation	 (Pandey	et	al.,	 2014; 
Singh	 and	Singh,	 2012)	 as	well	 as	 cellulose	 and	
hemicellulose	 degradation	 (Kabet	 et	 al.,	 2017;	
Vos et al., 2017). In	 China,	which	 is	 the	 largest	
producer	 of	 edible	 fungi	 (Liu	 et	 al.,	 2015),	 it is 
estimated	 that	 4-5	 kg of SMC are generated for 
each	 kg	 of	 fungi	 produced	 (Law	 et	 al.,	 2003;	
Medina et al., 2012; Phan and Sabaratnam, 2012). 
SMC is reused in mushroom cultivation (Wang 
et	 al.,	 2015)	 and	animal	 feed	 (Ayala	et	 al.,	 2011;	
Kim	 et	 al.,	 2011;	 Chang	 et	 al.,	 2016;	 Foluke	 et	
al., 2014), and the enzymes can be recovered 
(Phan and Sabaratnam, 2012; Rodriguez et al., 
2012;	Lim	et	 al.,	 2013;	Raymond	et	 al.,	 2015).	 In	

fact, the substrate is used as a substitute for peat 
(Abad et al., 2001) in bioremediation (Stanley 
et al., 2018; Marin-Benito	 et	 al.,	 2016),	 and	 for	
bioethanol	production	(Hiyama	et	al.,	2011), pest 
management (Ahmad	et	al.,	2016),	and	packaging	
and construction materials (Appels et al., 2018; 
Xing	et	al.,	2018;	 Jones	et	al.,	2017).	SMC	is also 
used as a soil conditioner and for the recuperation 
of degrade soils in agriculture (Gümüs and 
Seker,	 2017;	 Jankowski	 et	 al.,	 2018;	Unal,	 2015). 
In this sense, the addition of depleted compost 
to	 the	 soil	 can	 result	 in	 positive	 effects	 such	 as	
the development of a granular microstructure 
in the A horizon and a spongy structure in the 
B	 horizon	 (Nakatsuka	 et	 al.,	 2016),	 and	 also	
increased biological activity (Balesdent et al., 
2000),	where	fungi	play	an	important	role	because	
they	modulate	soil	strcuture.	As	the	hypha	grow,	
they stabilize, agglutinate, and decompose 
organic	matter	(binding	soil	grains	into	granular	
aggregates), and realign particulate materials 
on a micrometric scale (Tisdall	and	Oades,	1982;	
Ritz	 and	 Young,	 2004).	 According	 to	 Gümüş	
and Şeker, (2018), addition of spent compost to 
the soil improves electrical conductivity, total 
nitrogen, organic carbon, aggregate stability, and 
soil modulus of rupture, and thus represents an 
environmentally friendly alternative, particularly 
because there is an emerging demand to increase 
agricultural	 sustainability	 while	 decreasing	
dependence on chemical fertilizers.
In	 Colombia,	 agriculture	 accounts	 for	 6.3%	

of the gross domestic product of the country 
(Cárdenas et al., 2018). Sugarcane is one of the 
main	crops	in	Colombia,	being	particularly	grown	
in	the	Valle	del	Cauca	region,	where	consequently	
large	quantities	of	bagasse	are	produced.	In	2015,	
Valle	del	Cauca	generated	an	average	of	7,261,526	
tons	of	bagasse,	of	which	15%	was	used	for	paper	
production,	and	the	remaining	85%	was	used	in	
the production of bioethanol and the generation 
of energy in sugar mill boilers. Even though 
bagasse	has	different	uses,	it	has	not	been	clearly	
determined	yet	whether	it	might	be	socially	and	
environmentally sustainable (Becerra-Quirós et 
al.,	2016).

Sugarcane bagasse is a suitable substrate 
for	 the	 growth	 of	 L. edodes and P. ostreatus. 
Edible fungi production constitutes a process 
in	which	 a	 low-quality	 residue	with	 a	 negative	
environmental impact is converted into high-
quality	food	and	waste	(SMS)	with	the	potential	
to be used in the production of biofertilizers 
(Gerdelidani	and	Hosseini,	2018). These	features	
could play	a	key	 role	 in	 the	development	of	an 
integrated nutrient management system that 
contributes to the sustainability of regional 
agriculture, and to the implementation of circular 
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economy practices in the region. It	is	well	known	
that biofertilizers increase the size and volume 
of	plant	roots,	enhancing	the	efficiency	of	plants	
to	 obtain	 water	 and	 expanding	 their	 life	 span.	
Unlike	 synthetic fertilizers, biofertilizers are 
sources	of	bioavailable	nutrients	that	can	be	slow	
released (Malusà	and	Canfora,	2016).
The	 objective	 of	 this	 study	 was	 to	 evaluate	

the changes in the nutritional content and 
physical properties of sugarcane bagasse-based 
compost	 during	 the	 mycelial	 growth	 of	 the	
edible mushrooms P. ostreatus and L. edodes.	The	
potential	 of	 the	 substrate	 as	 a	 biofertilizer	 was	
evaluated.

MATERIALS AND METHODS

Obtaining degradable substrate 
Sugarcane	 bagasse	 was	 collected	 at	 the	

“Palestina”	sugar	mill,	located	at	Kilometer	6	on	
the	 road	 to	 the	 town	of	Candelaria	 in	Valle	 del	
Cauca	state.	The	collected	bagasse	was	stored	in	
a dry, covered area. A homogeneous sample of 
bagasse	was	taken	with	a	fiber	size	of	between	3	
and	5	cm	to	facilitate	the	effective	invasion	of	P. 
ostreatus and L. edodes mycelium.

Strains and spawn preparation
Strains of P. ostreatus and L. edodes	 were	

obtained from the fungal culture collection of 
the Department of Biology of the Universidad 
del Valle (Colombia). At the laboratory of the 
Department of Biology, mycelium fragments 
of	 both	 fungi	 were	 inoculated	 in	 Petri	 dishes	
containing potato dextrose agar (PDA) for 
reactivation	and	to	check	viability.	The	mycelial	
growth	 of	 each	 species	 in	 this	 culture	 medium	
was	used	to	prepare	the	spawn	in	wheat	grain.

Spawn production
Wheat	grain	was	first	washed,	and	after	CaCO3 

and CaSO4	 were	 added,	 it	 was	 boiled	 for	 15	
minutes,	drained,	placed	in	glass	jars,	sealed	and	
sterilized for one hour at 122 °C	1.5	atm.	Grown	
mycelium pieces of 1 cm2, obtained in PDA plates, 
were	inoculated	into	a	glass	jar	containing	sterile	
grain	wheat	once	they	reached	room	temperature.	
They	were	incubated	at	28°C	for	three	weeks.	

Substrate
Sugarcane	 bagasse	 was	 used	 as	 growth	

substrate.	 Two	 tests	 were	 conducted	 for	 each	
fungal	 species.	 Water	 was	 added	 to	 obtain	 70-
80%	 humidity.	 Plastic	 bags	 containing	 500	 g	 of	
the	 substrate	were	 sealed	 and	 sterilized	 during	
one hour at 122 °C	 and	 1.5	 atm.	After	 cooling,	
each	sterilized	substrate	was	inoculated	with	15	g	
spawn	(3%),	and	then	incubated	at	26	°C.	

Chemical analysis
Neutral	detergent	fiber	(NDF),	acid	detergent	

fiber	 (ADF)	 and	 acid	 detergent	 lignin	 (ADL)	
analyses	were	used	 to	determine	hemicellulose,	
cellulose, and lignin contents of the substrates. 
Total	 nitrogen	 (Automated	 Molecular	
Spectrophotometry	with	acid	digestion	Standard	
Method	 D8083-16),	 total	 carbon	 (gravimetric	
method	with	incineration	at	450	°C), phosphorus 
(Automated	Molecular	 Spectrophotometry	with	
acid digestion), calcium, magnesium, sodium, 
and potassium (Inductively Coupled Plasma- 
Optical Emission Spectrometry, Standard 
Method	 3120)	 were	 analyzed	 in	 sugarcane	
bagasse	at	0,	30	and	60	days	of	 the	colonization	
process	by	 each	 inoculated	 species.	Bagasse	pH	
was	measured	using	a	pH	meter	(Metrohm	914),	
and	a	water	ratio	of	10:	100	was	used.	The	initial	
C:N	ratio	was	obtained	by	dividing	the	nitrogen	
percentage by the carbon percentage obtained by 
the gravimetric method.

Statistical analysis
The	 experiments	 were	 arranged	 in	 a	

completely randomized design to test three 
replicates of P. ostreatus and L. edodes at 0, 30 days 
and	60	days.	The	results	obtained	in	the	chemical	
characterization	 were	 processed	 using	 SAS	 9.4	
statistical	software.	Descriptive	statistics	such	as	
means,	variances,	and	standard	deviations	were	
calculated.	Significant	differences	were	compared	
by	using	Leneve’s	Test	 at	 a	 significance	 level	of	
5%.	

RESULTS AND DISCUSSION

pH analysis
Values	 of	 substrate	 pH	 obtained	 during	 the	

colonization of P. ostreatus and L. edode tended to 
decrease. L. edodes showed	the	greatest	reduction	
from	 an	 average	 pH	 of	 5.64	 to	 3.90,	 while	 P. 
ostreatus	 resulted	 in	 a	 pH	 reduction	 to	 a	 value	
of 4.26	(Table	1).	The	one-way	Anova	Test	carried	
out	 to	 compare	 pH	 values	 obtained	 for	 each	
species	during	the	two	periods	evaluated	showed	
that	 there	 were	 no	 significant	 differences	 (p>	
0.05)	after	30	days.	However,	there	was	a	highly	
significant	 difference	 (p>	 0.01)	 after	 60	 days	 of	
inoculation.
Similar	pH	values	to	those	obtained	in	this	study	

have been previously reported for Pleurotus spp. 
(Owaid	et	al.,	2017),	L. edodes	(Ribas	et	al.,	2009),	
Agaricus subrufescens	 (Stokness	 et	 al.	 2019)	 and	
many	 species	 of	 fungi	 (Moore-Landecker,	 1996;	
Chang	and	Miles,	1989;	Deacon,	2006).	According	
to	 these	 authors,	 the	 decrease	 in	 pH	 levels	 can	
be	attributed	 to	 the	production	of	organic	 acids	
such as gluconic, pyruvic, citric, succinic acids 
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and sodium oxalate crystals formed by the fungal 
metabolism	 of	 sugars	 as	 well	 as	 the	 formation	
of	 carbonic	 acid,	 which	 accumulates	 in	 the	
mycelium	of	 the	 fungi	during	growth.	Changes	
in	pH	affect	the	degree	of	dissociation	of	mineral	
salts,	balance	between	dissolved	carbon	dioxide,	
bicarbonate ions and net charge of membrane 
proteins,	 having	 consequences	 for	 nutrient	
absorption	 (Deacon,	 2006).	 On	 the	 other	 hand,	
levels	of	acidic	pH	could	be	related	to	the	activity	
of lignin peroxidase and versatile peroxidases 
enzymes, produced by P. ostreatus and L. edodes 
to	 degrade	 the	 lignocellulose.	 These	 enzymes	
require	acidic	pH	values	ranging	from	3.1	to	4.7	
for catalytic functioning (Januzs, 2017). Similarly, 
enzymes responsible for cellulose degradation, 
such	 as	 endoglucanases,	 show	 optimal	 catalyst	
values	between	pH	4	and	5	(Baldrian,	2008).
According	 to	 the	 Colombian	 Technical	

Standard	5167,	which	regulates	organic	products,	
the	pH	of	an	organic	fertilizer	should	be	between	
4	and	9.	This	means	that	the	pH	of	the	substrate	
degraded by P. ostreatus specie complies	with	this	
regulation,	 while L. edodes does not meet this 
requirement	at	a	60-day	period.	However,	when	
preparing	 a	mixture	 for	 a	 field	 evaluation,	 this	
characteristic can be easily corrected by adding 
a carbonated material such as Calcium oxide. 
According to Marschner (2011), soils in arid or 
semi-arid	zones	are	calcareous,	have	an	alkaline	
pH	and	little	organic	matter,	while	plants	in	those	
places	have	micro	and	macronutrient	deficiencies,	
especially	 phosphorus.	 Banik	 and	 Dey	 (1982)	
reported	 that	 the	 addition	 of	 a	 compost	 with	
an	acid	pH	and	depleted	by	fungi	 to	calcareous	
soils can increase acidity and biological activity, 
leading to increases in CO2 production, and thus 
to the generation of acidic conditions. 

Analysis of moisture content
As P. ostreatus and L. edodes	grew	during	 the	

evaluation	 period	 (60	 days),	 moisture	 did	 not	
vary	 significantly	 (p>	 0.05).	Moisture	 content	 of	
a	substrate	strongly	influences	the	acquisition	of	
the	 necessary	 nutrients	 for	 fungal	 growth	 and	

enzymatic	 activity.	 The	 increase	 in	 moisture	
observed	during	the	growth	of	both	fungal	species	
may be related to the fact that, in the degradation 
or decomposition process of the substrate, CO2 
and	 water	 are	 formed	 as	 by-products	 of	 the	
metabolism of the species and degradation of 
molecules	 with	 simple	 and	 complex	 structures	
(Moore-Landecker,	1996;	Hurst	et	al.,	2007).	
Moisture	 levels	 between	 70	 and	 85%	 are	

recommended	 to	 facilitate	 fungal	 growth	 and	
nutrient availability (Romero et al., 2003). For P. 
ostreatus and L. edodes,	levels	of	65-75%	(Stamets,	
2000)	 and	 77%	 (Owaid	 et	 al.,	 2017)	 have	 been	
reported, respectively. In the present study, 
although	 moisture	 content	 was	 slightly	 higher	
(82%),	 there	 was	 no	 limitation	 or	 inhibition	 of	
growth	(Table	1).

Analysis of C:N ratio
P. ostreatus and L. edodes grew	on	a	 substrate	

with	a	C:N	ratio	of	42:1	(Table1),	which	is	within	
the range reported for species of the same genders. 
C:N ratio values of 30:1 and 117:1 have been 
reported for Pleurotus flabellatus (Srivastava and 
Bano,	1970),	18:1	and	36:1	for	P. tuber-regium (Wu 
et	al.,	2004),	and	85:1	for	P. ostreatus (Rajarathnam	
and	Bano,	1989).	For	Lentinus edodes, the literature 
has	described	C:N	ratio	values	of	25:1	(Oei,	1996),	
86:	 1	 (Ribas	 et	 al.,	 2009),	 and	 from	110:1	 to	 140:	
1 (Villegas et al., 2007). Nevertheless, Chang 
and	 Miles	 (1989),	 reported	 that	 a	 C:N	 ratio	 of	
20:1	 is	 adequate	 for	most	 fungi,	while	Hsu	 and	
Lo	 (1999)	 indicated	 that	 a	 low	C:N	 ratio	 results	
in	 high	 degradation	 of	 organic	 matter	 and	
compost	 stability.	 The	C:N	 ratio	 is	 an	 indicator	
of the nutritional level of a substrate and largely 
determines microbial development; therefore, a 
lack	of	balance	can	even	impede	substrate	growth	
and	 colonization	 (Stamets,	 2000).	However,	 this	
parameter can vary according to the strains used, 
the	different	 stages	of	development	and	 type	of	
substrate (Gaitán-Hernández et al., 2011).

Cellulose, hemicellulose and lignin analysis
Lignin,	 cellulose	 and	 hemicellulose	 contents 

Table 1.  Main physical parameters of the substrates during the growth of Pleurotus ostreatus and 
Lentinula edodes.

    Physical parameters                                       Time       pH     Moisture    Lignin    Cellulose   Hemicellulose   C:N
                                                                                (days)                         %           (g/kg)        (g/kg)             (g/kg)  Ratio
Sterile	Sugarcane	bagasse	 0	 5.64	 81.67	 91.40	 494.00	 275.00	 36.12
Sugarcane bagasse + Pleurotus ostreatus	 30	 4.50	 82.08	 83.20	 472.00	 202.00	 27.53
Sugarcane bagasse + Pleurotus ostreatus	 60	 4.26	 82.45	 48.30	 284.00	 208.00	 66.88
Sugarcane bagasse + Lentinula edodes	 30	 4.10	 82.48	 87.80	 491.00	 186.00	 31.34
Sugarcane bagasse + Lentinula edodes 	 60	 3.90	 82.56	 68.40	 374.00	 134.00	 64.45
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had	 significant	 decreases	 at	 60	 days	 for	 both	
P. ostreatus and L. edodes	 (Table	 1).	 P. ostreatus 
recorded	 the	 greatest	 decrease	 in	 lignin	 (47.2%)	
and	 cellulose	 (42.5%),	 while	 L. edodes	 showed	
the	 greatest	 hemicellulose	 degradation	 (51.3%).	
It	 is	 noteworthy	 that	 the	 greatest	 reduction	 of	
lignin and cellulose achieved by P. ostreatus	was	
observed	at	a	pH	of	4.3.	Cellulose,	hemicellulose	
and lignin are the main sources of carbon and 
nitrogen (Jamangapé-Ovando, 2018). During 
mycelium	growth	and	development,	biochemical	
changes result in the production of extracellular 
enzymes, responsible for degrading the insoluble 
components and a large amount of lignocellulosic 
material	 into	 soluble	 and	 low	molecular	weight	
compounds,	 which	 are	 subsequently	 taken	
up by intracellular enzymes of the fungus for 
their	 nutrition	 (Kurt	 and	 Buyukalaca,	 2010;	
Kudryavtseva	et	al.,	2008).	These	results	support	
the	idea	that	white	rot	fungal	species	vary	in	terms	
of	the	relative	rates	at	which	they	degrade	lignin	
and	 lignocellulose	 carbohydrates	 (Hatakka,	
2001), enzymatic mechanisms, redox systems 
and	radical	generation	(Baldrian	and	Valášková,	
2007). Additionally, experiments carried out 
with	 the	white	 rot	 fungus	Echinodontium taxodii 
showed	 that	 the	cellulosic	delignification	ability	
varies	 with	 the	 type	 of	 wood,	 being	 greater	 in	

hardwoods	than	in	softwoods	(Yu	et	al.,	2009).
In terms of lignin and cellulose degradation, 

a study on P. ostreatus conducted by Benavides 
(2013)	 reported	 values	 of	 59.02%	 and	 84.23%,	
respectively, and concluded that such decreases 
resulted from the increase in mycelium during 
cultivation, and the extracellular enzymatic 
activity that generated the mineralization and 
degradation of the lignocellulosic complex. In our 
study,	 levels	 of	 lignin	 degradation	were	 higher	
than those of cellulose for both P. ostreatus and L. 
edodes,	and	varied	slightly	between	the	species	with	
values	of	47.2%	and	42.5%,	respectively.	Pandey	
and Singh (2014) reported lignin, hemicellulose 
and	cellulose	levels	of	50.21%,	27.73%	and	41.20%,	
respectively.	This	is	in	agreement	with	the	results	
obtained	 in	 the	 present	 study,	 confirming	 that	
there is also a decrease in hemicellulose due to 
mycelium	 growth	 and	 expansion.	 Montoya	 et	
al. (2014) determined that L. edodes	 is	 effective	
in the degradation of lignocellulosic materials, 
particularly	lignin	with	51.8%	of	degradation.

N, P and K analysis
Macro and micronutrients depleted by P. 

ostreatus and L. edodes	after	60	days	of	growth	are	
presented in Figs. 1, 2, 3 and 4. It is evident that 
the resulting substrate presents an increase in 

Fig. 1.  Average NPK variation for Pleurotus ostreatus. Stage of development: 0. Sterile sugarcane 
bagasse, 1. Sugarcane bagasse substrate after 30 days of inoculation with P. ostreatus, 2. 
Sugarcane bagasse substrate after 60 days of inoculation with P. ostreatus.
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Fig. 2.  Average NPK variation for Lentinus edodes. Stage of development: 0. Sterile sugarcane bagasse, 
1. Sugarcane bagasse substrate after one 30 days of inoculation with L. edodes, 2. Sugarcane 
bagasse substrate after 60 days of inoculation with L. edodes.

 

 

 

Fig. 2. Average NPK variation for Lentinus edodes. Stage of development: 0. Sterile 
sugarcane bagasse, 1. Sugarcane bagasse substrate after one 30 days of inoculation with 
L. edodes, 2. Sugarcane bagasse substrate after 60 days of inoculation with L. edodes. 

Fig. 3.  Average of Ca, Mg, S and Na variation for Pleurotus ostreatus. Stage of development: 0. 
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primary	macronutrients	(N,	P,	K)	and	secondary	
macronutrients (Ca, Mg, S and Na) after the 
growth	of	the	two	species	studied.	
N	content	in	the	depleted	substrate	was	similar	

for both species during the evaluation period. 
Average	values	of	5.69	g	/	kg	(0.569%)	and	6.38	g	
/	kg	(0.638%)	were	obtained	for	P. ostreatus and L. 
edodes, respectively. Phosphorus content behaved 
in	 a	 similar	way,	 reaching	values	 of	 1.21	 g	 /	 kg	
(0.121%)	for	P. ostreatus	and	1.09	g	/	kg	(0.109%)	
for L. edodes.	 The	 final	 potassium	 content	 in	
the	 substrate	was	 3.92	 g	 /	 kg	 (0.392%)	 and	 3.56	
g	 /	 kg	 (0.356%)	 for	 P. ostreatus and L. Edodes, 
respectively. The	 one-way	Anova	 performed	 to	
compare the values obtained for each species 
showed	no	significant	differences	(p>	0.05).	These	
results	agree	with	those	obtained	by	Owaid	et	al.	
(2017),	who	reported	nitrogen	levels	of	6.65g	/	kg	
in a substrate depleted by P. salmoneostramineus, 
made	of	50%	wheat	straw	+	30%	sawdust,	and	20%	
palm	fiber.	Additionally,	N	content	reached	9.98	
g	/	kg	in	another	substrate	depleted	by	P. ostreatus 
based	on	50%	wheat	straw,	30%	sawdust	and	20%	
palm	fiber,	due	to	the	fact	that	they	started	from	
twice	the	 initial	content	of	 the	substrate	used	in	
the	present	 study	 (3.05	g	 /	kg).	 In	 the	case	of	L. 
edodes,	Ribas	et	al.	(2009)	found	an	equal	value	for	

N	in	a	substrate	made	up	of	eucalyptus	sawdust	+	
10%	rice	bran	+	gypsum	and	CaCO3. Experiments 
carried	out	by	Medina	et	al.	 (2009)	 showed	 that	
the	N	 content	 in	 different	mixtures	 of	 compost	
spent by P. ostreatus + commercial Sphagnum 
varied	from	11-13g	/	kg.	

Rao et al. (2007) highlighted that as a spent 
substrate presents high variability and chemical 
imbalance, it is necessary to replace the missing 
chemicals in order to be used as a fertilizer. In the 
present study, the nitrogen level in the compost 
degraded by P. ostreatus and L. edodes was	below	
the	optimal	range	required	for	organic	fertilizers,	
and	therefore	a	mixture	with	other	plant	residues	
with	higher	N	content	can	be	used	to	start	with	a	
substrate richer in N from its initial formulation 
when	the	substrate	was	not	supplemented	during	
the	 initial	 phase.	 On	 the	 other	 hand,	 it	 would	
be	 interesting	 to	 make	 mixtures	 of	 compost	
depleted by these species and compost depleted 
by Agaricus subrufescens,	which	has	an	N	content	
of	1.8%,	in	order	to	achieve	acceptable	levels	of	N	
for	an	organic	fertilizer,	which	range	from	1	to	2%	
(10-20g	/	kg)	(Alexander,	1994).

Regarding levels of phosphorus (P) and 
potassium	(K),	Alexander	(1994),	defined	that	the	
optimal range for organic compost varies from 

 
Fig. 4. Average of Ca, Mg, S and Na variation for Lentinula edodes. Stage of 
development: 0. Sterile sugarcane bagasse, 1. Sugarcane bagasse substrate after 30 days 
of inoculation with L. edodes, 2. Sugarcane bagasse substrate after 60 days of inoculation 
with L. edodes. 
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0.6%	to	0.9%	for	P	and	from	0.2%	to	0.5%	for	K.	
In In the present study, the SMS of P. ostreatus 
and L. edodes	 showed	 low	 levels	of	phosphorus,	
with	 values	 of	 0.12%	 and	 0.11%,	 respectively.		
However,	 they	may	 represent	 a	 good	 source	 of	
K,	with	values	of	0.39%	and	0.36%,	respectively.	
Ribas	 et	 al.	 (2009)	 also	 reported	 levels	 of	 0.58%	
and	0.17%	for	P	and	K,	respectively,	in	a	substrate	
of L. edodes based	on	eucalyptus	sawdust	and	10%	
rice	 bran.	 The	 disparity	 in	 the	 results	 suggests	
that more studies are needed to balance the 
appropriate levels of these elements in a substrate. 
It is important to note that P bioavailability 
depends	on	the	contents	of	organic	matter,	Ca,	Fe	
and	Al	 as	well	 as	pH	of	 the	medium	 since	P	 is	
more	bioavailable	to	plants	at	pH	between	6	and	
7 (Chang et al., 2014).

Ca, Mg, S and Na Analysis
Values of secondary macro elements such as 

calcium,	magnesium,	sulfur	and	sodium	showed	
different	trends	from	the	formulation	stage	until	
completion	 of	 the	 60-day	 evaluation	 period	 for	
both P. ostreatus and L. edodes.	 Fig.	 2	 shows	 the	
percentage of each element during the three 
evaluation	periods	(0,	30	and	60	days).
Calcium	 increased	 in	 a	 very	 similar	 way	 in	

both species, reaching an average content of 
0.7%,	 while	 there	 was	 no	 considerable	 increase	
for sodium and magnesium. Sulfur behaved very 
similarly	in	the	two	species,	recording	an	increase	
of	0.09%	and	0.07%	for	P. ostreatus and L. edodes, 
respectively; the content of this element in the 
agro-industrial	substrate	was	0.051%	(0.51)	g	/	kg.	
P. ostreatus	recorded	an	average	value	of	0.141%	
(1.41	g	/	kg),	while	the	final	average	value	reached	
by L. edodes	was	0.123%	(1.23	g	/	kg).	
Maszkiewicz	 (2010)	 extensively	 documented	

the high Ca, Mg, Na and S contents in the residual 
compost of Agaricus bisporus.	 Postemsky	 and	
López-Castro	 (2016)	 reported	 that	 a	 compost	
degraded by P. ostreatus	based	on	sunflower	shell	
and	supplemented	with	2%	and	0.5%	of	calcium	
sulfate (CaSO4) and calcium carbonate (CaCO3), 
respectively,	contained	1305	mg	/	kg	of	Ca,	30	mg	
/	kg	of	Na,	173	mg	/	kg	of	Mg	and	170	mg	/	kg	of	S.

CONCLUSIONS

The	 increase	 in	 nutrients	 observed	 in	 the	
material	 resulting	 after	 the	 growth	 of	 Pleurotus 
ostreatus and Lentinula edodes in sugarcane 
bagasse can be used to develop a suitable organic 
amendment by adding plant residues rich in 
nitrogen, phosphorus, potassium, calcium, 
total	minerals,	 fat	 and	fiber	 beginning	 from	 the	
initial stage of compost formulation to obtain 
an appropriate C:N ratio. An optimum C:N 

relation	 allows	 for	 better	 mycelial	 growth,	 and	
consequently	an	 improved	synthesis	of	proteins	
and	other	minerals	in	the	substrate.	The	addition	of	
this substrate can contribute to the recovery of soils 
that have undergone processes of degradation, 
salinization, extensive use of chemical fertilizers, 
or	that	are	deficient	in	nutrients. It	is	well	known	
that	this	material	is	rich	in	organic	matter	so	that	
its use could improve parameters related to soil 
structure	 such	 as	 porosity,	 aeration,	 and	 water	
movement.	 Similarly,	given	 the	decrease	 in	pH,	
which	occurs	naturally	as	fungal	mycelium	grows	
due to the production of various metabolites, 
the resulting substrate could be used to treat 
and modify calcareous soils once appropriate 
doses and mixtures are determined. Finally, the 
decomposition	and	delignification	carried	out	by	
these	two	species	of	fungi	are	crucial	steps	in	the	
process	of	organic	matter	humidification.
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