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RESUMEN

La cuantificación de la concentración de nutrientes en los suelos es importante para la 
implementación de estrategias de fertilización adecuadas y mejorar la productividad agrícola. En 
las últimas décadas se han desarrollado nuevos métodos instrumentales, tales como el uso de la 
espectroscopía de infrarrojo cercano (NIRS). Aunque su potencial ha sido reconocido por los 
científicos del suelo durante algunas décadas, el uso de NIRS para el análisis de rutina del suelo, 
según nuestro conocimiento, está poco desarrollado en Chile. Los modelos de calibración se 
desarrollaron utilizando la regresión de mínimos cuadrados parciales (PLSR). El objetivo de este 
estudio fue evaluar el uso de NIRS para la determinación de la concentración de calcio, magnesio, 
fósforo, potasio, pH (agua), materia orgánica, sodio, aluminio intercambiable, amonio y nitrato en 
suelos volcánicos del sur de Chile. El coeficiente de determinación en la calibración obtenida fluctuó 
entre 0,79-0,95 y 0,79-0,89, en Andisoles y Ultisoles, respectivamente; los valores de la desviación de 
predicción residual (RPD) variaron entre 2,1-4,4 y 2,2-3,1, en Andisoles y Ultisoles, respectivamente; 
y no fue posible generar modelos de calibración robustos para Al Exch, Na y NH4

+ en Andisoles y 
Al Exch, Mg, NO3

- y Na en Ultisoles. Aunque algunos de los modelos desarrollados presentaron 
elevados R2, esta metodología requiere una validación adicional que incluya un mayor número de 
muestras, una distribución espacial más amplia que cubra una variedad de condiciones climáticas y 
agrícolas. 

Palabras clave: suelos volcánicos, modelo de calibración, FT-NIRS, composición mineral.

ABSTRACT

The quantification of nutrient concentration in soils is important for the implementation of 
adequate fertilization strategies, and also to improve agricultural productivity. In recent decades, 
new instrumental methods have been developed, including the use of near infrared spectroscopy 
(NIRS). Although its potential has been recognized by soil scientists for a few decades, the use of 
NIRS for routine soil analysis has been, to the best of our knowledge, poorly developed in Chile. 
Calibration models were developed by partial least squares regression (PLSR). The objective of this 
study was to assess the use of NIRS for the determination of concentrations of Calcium, Magnesium, 
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Phosphorus, Potassium, pH (water), organic matter, Sodium, exchangeable aluminum, ammonium 
and nitrate in volcanic soils of southern Chile. The coefficient of determination in the calibration 
obtained ranged from 0.79 to 0.95 and 0.79 to 0.89 in Andisols and Ultisols, respectively. The residual 
prediction deviation (RPD) values varied between 2.1 and 4.4 in Andisols, and between 2.2 and 
3.1 in Ultisols. It was not possible to generate robust calibration models for Al Exch, Na and NH4

+ 
in Andisols and Al Exch, Mg, NO3

- and Na in Ultisols. Although some of the models developed 
presented high R2, this methodology requires further validation, including a greater number of 
samples from a wider spatial distribution, covering a variety of climatic and agricultural conditions.

Key words: volcanic soil, calibration model, FT-NIRS, mineral composition. 

INTRODUCTION

Currently, the main challenge for agriculture 
is to produce more food with the same (or less) 
amount of agricultural supplies, including 
fertilizer application. Thus, quantifying nutrients 
concentration in soil is particularly important 
for the implementation of adequate fertilization 
strategies to improve agricultural productivity. 
Soil analysis has become a routine practice 
for the evaluation of soil fertility. However, 
standard laboratory techniques for chemical soil 
analysis require pretreatments, such as, density 
fractionation, ultrasonic, acidic, alkaline or 
oxidizing treatments, electrostatic separation and 
sequential extraction, among others (Blaesing 
and Amelung, 2018). Furthermore, traditional 
analysis also uses chemical products, which may 
be harmful to the environment, because some 
of the consumables used are corrosive, toxic, 
or flammable (Bonett et al., 2015; Mouazen and 
Kuang, 2016). Moreover, chemical processes are 
usually time-consuming and expensive (Ge et al., 
2011).

In this sense, new instrumental methods 
have been developed to estimate soil physical 
and chemical properties, such as near-infrared 
spectroscopy (NIRS) (Viscarra-Rossel and 
Webster, 2012; Jaconi et al., 2017). This technique 
obtains the reflectance spectrum of a sample in 
the range of the NIR region (780-2500 nm). Briefly, 
when a sample is scanned, the radiant energy is 
absorbed selectively according to the specific 
vibration frequency of the molecules present, 
which produces an overtone in the spectrum. 
Reflectance signals result from vibrations in 
C–H, O–H, N–H chemical bonds, and provide 
information about the proportion of each element 
in the analyzed sample. NIRS in combination 
with chemometric methods is a powerful tool for 
classification tasks or quantitative analyses. 

Soil scientists have preferred to use NIRS 
because of its ease of use, portability, and lesser 
demand for sample preparation (Bellon-Maurel 
et al., 2010). Moreover, due to the low absorption 
coefficients of the higher overtones compared to 
fundamental vibrations, NIR can penetrate deeper 

than IR and thus handle larger sample volumes. 
In fact, the advantages of NIRS over MIR and 
other spectroscopic techniques (Rodríguez et al., 
2016) rely on these capacities, and also on a much 
lower sensitivity to water and the possibility to 
work with quartz materials for fibers and optical 
elements (Paul et al., 2019).

 The partial least square regression (PLSR) 
is a common chemometric method used for 
estimating regression models from spectral 
information and reference analytical data (Lucà 
et al., 2017). Different soil chemical and physical 
properties have been successfully predicted by 
PLSR modelling of spectroscopic data. Therefore, 
spectroscopy in the near-infrared region of 
the electromagnetic spectrum, combined with 
chemometric treatments, has been suggested as 
a cost and time saving procedure to characterize 
soil chemical properties (Conforti et al., 2018).  

This analytical tecnique has been used in 
agricultural sciences to quantify soil nutrients 
such as Ca, Mg, Fe, Mn and K; heavy elements 
such as Co, Cu, Ni, Pb, Zn and Mn or possible 
contaminants in urban soils (Hong et al., 2018; 
Ramaroson et al., 2018; Dematte et al., 2019; Hong 
et al., 2019; Recena et al., 2019). Although its 
potential has been recognized by soil scientists, 
the use of NIRS for routine soil analysis remains, 
to the best of our knowledge, poorly developed 
in Chile. In this sense, it is worth highlighting 
the importance of this study since it is the first 
publication regarding the use of this technique in 
southern Chilean soils.

The objective of this study was to assess the use 
of NIRS for the determination of Ca, Mg, P, K, pH 
(water), organic matter (OM), Na, exchangeable 
aluminum (Al Exch), ammonium (NH4

+) and 
nitrate (NO3

-) concentrations in two volcanic ash 
soils in southern Chile.

MATERIALS AND METHODS

Soil sample collection and preparation
Volcanic ash soil samples (0-10 cm) were used 

to determine the concentration of the selected 
nutrients: Ca, Mg, P, K, pH (water), organic matter 
(OM), Na, exchangeable aluminum (Al Exch), 
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ammonium (NH4
+) and nitrate (NO3

-). For each site, 
individual soil samples were randomly collected 
between 2012 and 2016 from farms located 
in southern Chile (39° to 42° S), representing 
the natural variability in local livestock farm 
production systems. A total of 164 samples were 
collected from Andisols (Typic Hapludands) and 
147 samples from Ultisols (Typic Hapludults) 
(Soil Survey Staff, 2014). 

Soil samples were collected and homogenized, 
dried at ambient temperature (18-20°C) and 
sieved through a 2 mm sieve. The resulting 
material was divided into two fractions, one was 
used for the traditional wet chemistry analyses 
and one for NIRS determinations. 

Chemical soil analyses 
All chemical analyses were performed 

according to the methodology compiled by 
Sadzawka et al. (2006) at the Soil Laboratory 
of Instituto de Investigaciones Agropecuarias 
(INIA), Chillán, Chile. Briefly, soil pH was 
potentiometrically measured in water by 
soil suspension at a 1:2.5 soil: solution ratio. 
Organic matter was estimated by wet digestion 
through a modified Walkley-Black method. 
Ammonium and nitrate were determined by 
automated colorimetry (autoanalyzer SA 4000, 
Skalar Analytical B.V., Breda, The Netherlands). 
Exchangeable cations (Ca+2, Mg+2, K+, and Na+) and 
exchangeable Al+3 was extracted with 1 M NH4Ac 
at pH 7.0 and 1 M KCl, respectively, and analyzed 
by atomic absorption spectrophotometry (AAS 
969, UNICAM, Cambridge, UK). Olsen P was 
extracted with 0.5 M NaHCO3 at pH 8.5 and 
analyzed by the Murphy and Riley method and 
turbidimetry. 

NIRS and chemometric analysis
For spectral analysis, dried and grounded soil 

samples were scanned using NIR spectroscopy 
(MPA-FT NIR, Bruker Optik GmbH, Ettlingen, 
Germany). Spectral data were transformed to 
absorbance (A) according to the equation: A = 
log10 (1/R), where R is the reflectance obtained 
at each wavenumber from 12.000 to 4.000 cm-1 
(NIR region) with 16 cm−1 resolution and 64 scans. 
Partial least-squares regression (PLSR) with leave-
one-out (LOO) cross-validation was performed 
to fit predictive models using chemometrical 
software OPUS version 6.5 (Bruker Optik GmbH, 
Melvyn Becerra Cia. Ltda). 

The OPUS software was used to apply different 
preprocessing to spectra: vector normalization 
(VN), multiplicative scatter correction (MSC), 
straight line subtraction (SLS), first derivative 
(FD), and second derivative (SED). Outliers were 
identified and removed during the calibration 

process as they could affect model performance 
and diminish precision for most samples. A 
maximum of two outlier elimination passes (T 
and H) were performed before completing the 
final calibration. T outliers corresponded to 
samples with significant differences between 
their laboratory and predicted values, whereas 
H outliers were samples whose spectra were too 
distant (H > 3) from the spectral centre of the 
calibration set (Conzen, 2006).

Another important factor in a chemometric 
model is the number of PLS factors. The selection 
of PLS factors is of major importance for the quality 
of the analysis, for example: i) Choosing too few 
factors will lead to an insufficient explanation of 
the changes in the spectral and concentration data 
(underfitting), ii). On the contrary, if too many 
factors are chosen, the model tries to account for 
even the smallest changes in the data set, such 
as spectral noise (overfitting). Thus, every PLS 
model has the optimum number of factors to 
obtain the smallest possible error of analysis. The 
maximum number of PLS factors was restricted 
to 10 (Conzen, 2006).

There are numerous hints that lead to the 
optimum number of factors for a certain model: 
The value of the mean error of predicction go 
through a minimum for the optimal PLS factors. 
In contrast, the value of the R2 possesses a 
maximum. Thus, the optimum number of PLS 
factors for a certain calibration model can be 
found easily: First, the R2 values and the mean 
error of prediction are computed. Then, these 
values are plotted as function of the PLS factors. 
The number of PLS factors is to be regarded as 
optimal, when the characteristics mentioned go 
through an optimum value, and/or do not change 
significantly for higher factor numbers. If several 
numbers of factors lead to comparably good 
results, it is recommended to select the model 
with the smallest number of PLS factors.

Criteria for model selection
The criteria used to choose the best prediction 

model consider: i) low root mean square error of 
cross validation (RMSECV); ii) high coefficients 
of determination in cross-validation (R2cv); iii) 
root mean square error of estimation (RMSEE); 
iv) residual predictive deviation (RPD: ratio 
between the standard deviation -SD- of the 
reference values and the error of prediction); and 
v) number of factors. 

The RPD value could be an important criterion, 
but Bellon-Maurel et al (2010) pointed out that 
soil physical properties and chemical contents, 
both exhibit a biased normal distribution; 
therefore, the ratio of performance to IQ (RPIQ) 
value is more objective than RPD (Bellon-Maurel 
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et al., 2010). RPIQ is based on quartiles, which 
better represent the spread of the population. The 
quartiles are milestones in the population range: 
Q1 is the value below which we can find 25% of 
the samples; Q3 is the value below which we find 
75% of the samples; and Q2, commonly called the 
median, is the value under which 50% of samples 
are found. RPIQ is the ratio of IQ to RMSE, where 
IQ is the difference between the third quartile 
Q3 and the first quartile Q1. A larger RPIQ value 
indicates improved model performance. A similar 
classification can be used for RPIQ and RPD (Jin 
et al., 2020). 

In this study, the selection criteria were the 
lowest RMSECV, the lowest number of PLS 
factors and the highest RPD. The smaller the error 
of cross-validation (compared to the variance of 
the reference values), the larger the RPD value 
and thus the better the model. 

RESULTS AND DISCUSSION

Chemical soil characterization
The variation coefficient in both soil types 

was low, while soil nutrient concentration varied 
among samples as a reflection of variations in 
agricultural management, climatic factors, and 
soil type, which is in agreement with Vohland 
and Emmerling (2011) (Table 1).

Phosphorus concentration in Andisols 
was lower than that registered in Ultisols, in 
agreement with Cardenas et al. (2013), who 
found Olsen P concentrations five and ten-times 
lower in Andisols than in Ultisols, respectively, in 
southern Chile.  The concentrations of OM found 
for each soil type in this study coincide with the 
values reported by other authors (Vistoso et al., 
2012; Lobos et al., 2016). Volcanic soils have a 
high OM concentration, and it is common to find 

14% to 20% of OM within the first 15 cm of soil 
in Andisols (Carvajal et al., 2016), whereas it is 
slightly smaller in Ultisols (Clunes et al., 2014). 
The concentrations of Ca found in this study were 
lower than those found by Cardenas et al. (2013) 
in three different soil series (including Andisols 
and Ultisols) in southern Chile. Mg concentration 
was similar in both soil types but lower than the 
values reported by Debaene et al. (2010), Jarquín-
Sánchez et al. (2012), and Cardenas et al. (2013) for 
Polish, Mexican, and volcanic Chilean ash soils, 
respectively. This difference is probably explained 
by the fact that the data of the present study 
correspond to fertilized and non-fertilized soils, 
while the studies mentioned before included Mg 
fertilizer application. Potassium concentration 
found in Ultisols was 1.9 times greater than that 
of Andisols and coincide with the levels reported 
by other authors (Vistoso et al., 2012; Lobos et al., 
2016). The average values of pH (water), Sodium 
concentration and exchangeable Al were similar 
to those reported by Cardenas et al. (2013), 
Carbajal et al., (2016) and Lobos et al. (2016) for 
similar soil types. Finally, the concentration of 
ammonium and nitrate was similar to that found 
by Dixon et al. (2011) in volcanic ash soils in 
southern Chile.

Chemometric analysis
The best calibration was deemed to be one 

with the lowest RMSECV, the lowest standard 
deviation, and the highest R2 and RPD (Table 2). 
The coefficient of determination in the calibration 
sets fluctuated between 79% and 95%, and 
between 79% and 89%, in Andisols and Ultisols, 
respectively. The RPD values varied between 2.1 
and 4.4 in Andisols, and between 2.2 and 3.1 in 
Ultisols. RPIQ values ranged from 0.8 to 4.5 and 
1.3 to 3.7, in Andisols and Ultisols, respectively. 

Table 1. Soil chemical characterization of two Chilean volcanic ash soil types (0-10 cm depth). 

                  Andisols (n = 164)                                Ultisols (n = 147) 
Parameters    Range Mean ± SEM CV   Range             Mean ± SEM CV
P, mg kg-1 2.69-36.00 14.27 ± 0.74 0.52 2.29-143.25 20.86 ± 1.55 0.94
pH water 5.13-6.11 5.62 ± 0.02 0.04 5.01-5.91 5.60 ± 0.02 0.03
OM, % 8.92-31.60 21.50 ± 0.38 0.21 7.44-31.00 15.70 ± 0.38 0.29
Ca, cmol (+) kg-1 0.68-18.57 5.30 ± 0.26 0.65 1.65-18.37 7.15 ± 0.21 0.35
Mg, cmol (+) kg-1 0.28-2.05 1.00 ± 0.03 0.42 0.53-2.44 1.38 ± 0.04 0.33
K, cmol (+) kg-1 0.15-1.38 0.47 ± 0.03 0.62 0.15-5.44 0.87 ± 0.05 0.74
Na, cmol (+) kg-1 0.02-0.60 0.16 ± 0.01 0.79 0.03-1.21 0.14 ± 0.01 0.79
Al, cmol (+) kg-1 0.02-2.50 0.23 ± 0.02 1.18 0.00-8.73 0.34 ± 0.07 2.50
N-NH4 , mg L-1 2.34-19.37 7.26 ± 0.42 0.66 0.50-122.92 18.50 ± 2.13 1.30
N-NO3 , mg L-1 1.40-573.56 73.01 ± 12.35 1.20 0.01-182.46 38.86 ± 3.35 0.98
Available N, mg kg-1 1.45-579.22 53.47 ± 7.59 1.37 2.71-190.83 57.43 ± 4.10 0.81

SEM: standard error of mean; CV: Coefficient of variation
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It was not possible to generate robust calibration 
models for Al Exch, Na and NH4

+ in Andisols and 
Al Exch, Mg, NO3

- and Na in Ultisols. The relation 
between NIRS prediction and composition 
obtained by reference methods for all parameters 
are shown in Fig. 1a, b.

In both soil types, predicted values of P, OM 
and Ca have a strong relation with the reference 
values. However, the predictive quality was 
moderate for pH and K in both soils type, and 
Mg in Ultisols, but extremely low for Al Exch, Na, 
NH4

+ and NO3
- in both soils (Fig. 1a, b).

These results could be associated with the 
low variability in the sample sets for some of 
the parameters studied, being this a potential 
limiting factor in the prediction of soils properties 
from NIR spectra. The generation of a successful 
statistical model requires wider data sets, this is, 
data sets covering a wide range of concentrations. 
When random samples are used for the 
calibration purpose, as was the case in this study, 
the performance may be constrained by narrow 
data sets. This may be the case of the poor models 
obtained for Al Exch, Na and Mg (Fig. 1 a, b). 
Calibration models could improve by enlarging 
the number of samples and paying attention to 
increase the concentration range of the analysed 
elements. 

In this study, the optimal number of PLS factors 
is determined by a leave-one-out cross-validation 
(CV) based on the minimum RMSECV and a 
maximum PLS factor of 10. All pre-preprocessing 
used were different depending on the soil type 
(Table 3). The decision of when to stop extracting 
components depends on when there is only very 
little variability left.

The results show number of PLS factors 
with values between 3 and 10 in Andisols, and 
between 1 and 10 in Ultisols. Figure 2 shows the 
mean prediction errors for PLS regression in two 
contrasting cases such as Al and P in both soil 
types. It can be observed that each PLS model has 
an optimum number of with the minimum error.

In general, pre-preprocessing strategies are 
used to remove or reduce unwanted signal 
noises, accentuate the spectral features of 
interest, and optimize the extraction of useful 
spectral information. Some studies have 
demonstrated that spectral preprocessing is an 
important component of multivariate modelling 
analysis and that this would improve predictive 
performance (Gao et al., 2014; Nawar et al., 2016; 
Vašát et al., 2017). Spectrum pre-treatment may 
improve the quality of NIRS calibration when a 
powerful software is used, but the accuracy of 
the reference data and the quality of the spectra 
(i.e., reduced interference) are the key elements of 
reliable calibration models.
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Fig. 1a. Model performance for the correlation of values obtained in the laboratory with respect to 
those predicted by NIRS for a) P (mg kg-1), b) Mg (cmol(+) kg-1 ), c) pH water, d) OM (%), e) K 
(cmol(+) kg-1 ), f) Al exch (cmol(+) kg-1), g) Na (cmol(+) kg-1 ), h) Ca (cmol(+) kg-1 ), i) N-NH4 (mg 
L-1 ) and j) N-NO3 (mg L-1) in Andisols.

[Escriba aquí] [Escriba aquí] [Escriba aquí] 

 237 

 238 

 239 

 240 

 241 

 242 

 243 

 244 

 245 

 246 

 247 

 248 

 249 

 250 

 251 

 252 

 253 

 254 

 255 

 256 

 257 

 258 

 259 

 260 

 261 

 262 

 263 

 264 

 265 

 266 

 267 

[Escriba aquí] [Escriba aquí] [Escriba aquí] 

 268 

 269 

 270 

 271 

 272 

 273 

 274 

 275 

 276 

 277 

 278 

 279 

 280 

 281 

 282 

 283 

 284 

 285 

Fig. 1a. Model performance for the correlation of values obtained in the laboratory with 286 

respect to those predicted by NIRS for a) P (mg kg-1), b) Mg (cmol(+) kg-1 ), c) pH 287 

water, d) OM (%), e) K (cmol(+) kg-1 ), f) Al exch (cmol(+) kg-1), g) Na (cmol(+) 288 

kg-1 ), h) Ca (cmol(+) kg-1 ), i) N-NH4 (mg L-1 ) and j) N-NO3 (mg L-1) in Andisols. 289 

 290 

Don Pedro: En la Fig. 1a  NH4 y NO3 corregir unidad. Falta un espacio: debe decir: mg L-1 291 

Los mismo en Fig. 1b292 
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Fig. 1b. Model performance for the correlation of values obtained in the laboratory with respect to 
those predicted by NIRS for a) P (mg kg-1), b) Mg (cmol(+) kg-1), c) pH water, d) OM (%), e) K 
(cmol(+) kg-1), f) Al exch (cmol(+) kg-1), g) Na (cmol(+) kg-1), h) Ca (cmol(+) kg-1), i) N-NH4 (mg 
L-1) and j) N-NO3 (mg L-1) in Ultisol.
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Table 3.  Partial least-squares (PLS)-based predictions from NIR data after applying different 
methods of spectra pre-processing.

                 Andisols                                       Ultisols
Parameters  Treatment                           PLS            Treatment                                     PLS
                                                                                      factors                                                               factors
P, mg kg-1 Second derivate 7 First derivate 10
pH, water Second derivate 8 Straight line sustration 7
OM, % Second derivate 7 Constant offset elimination 7
Ca, cmol (+) kg-1 First derivate 4 Vector normalization 9
Mg, cmol (+) kg-1 Straight line sustration 9 Multiplicative  9
   scattering correction
K, cmol (+) kg-1 First derivate 3 Straight line sustration 7
Na, cmol (+) kg-1 First derivate + Vector 9 First derivate 3
 normalization
Al exch, cmol (+) kg-1 Second derivate 3 Min- MaxNormalization 1
N-NH4 , mg L-1 Straight line sustration 4 First derivate + Vector 3
   normalization
N-NO3 , mg L-1 Vector normalization 9 First derivate + Vector 2
   normalization

Fig 2.  Mean Errors of Prediction for Al exch and P plotted against the number of PLS factors in 
Andisols and Ultisols. 
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Our calibration models were similar to those 
reported by Bonett et al. (2015) and Recena et al. 
(2019) for Ca, Mg, pH and K. Debaene et al. (2010) 
obtained very poor models for pH, Mg, K and P 
in Polish soils with R2 in the range of 0.01-0.69 for 
a Podzoluvisol in Wielkopolska, Poland. Dematte 
et al. (2019) reported similar models for OM, P, K, 
Ca, Mg, and better models for Al in soil samples 
of Brazil. Our results for OM were more robust 
than those reported by Hong et al. (2018, 2019). 
There are few studies using NIRS to quantify 
NH4

+ and NO3
-. Freschet et al. (2011) reported R2 

varying between 0.81 and 0.95 for NH3-N, but 
these values were obtained using a low number of 
samples (n = 56), with high variability (mean and 
standard deviation of reference data was 32.08 ± 
30.25). These differences can be explained by the 
different reference methods used for determining 
soil properties .  

Different reference methods may produce 
different reference values, affecting the precision 
of NIRS calibrations. Thus, the identification of 
reliable reference methods that are best correlated 
with NIRS spectra would be valuable for 
standardization of NIRS in soil analysis. On the 
other hand, the lack of standardized methodology 
in relation to: (i) sample preparation, (ii) spectrum 
acquisition, (iii) spectrum pre-treatment, (iv) soil 
texture, (v) geological heterogeneity, (vi) reference 
method, and (vii) calibration method are factors 
that need to be taken care of to get more accurate 
results using the NIRs technique.  In addition, 
the identification of soil properties that require 
spectrum pre-processing and those for which the 
visible-near-infrared or the near-infrared region 
should be used during calibration requires more 
investigation. This would make NIRS more user-
friendly and would allow comparisons between 
different studies.

However, in practice, many factors may affect 
soil spectra, and the acquired NIR spectra may 
contain environmental information and noise, 
which would influence the model performance 
(Stenberg et al., 2010; Shi et al., 2014; Viscarra 
Rossel et al., 2016). Moreover, the correlations 
between spectral signatures and the specific 
wavelengths may be masked given the complexity 
of the interaction between light and the presence 
of overlapping wavebands in NIR spectra, which 
result from the different chemical components 
of soils (Hong et al., 2019). Our results may 
have varied because of high heterogeneity 
in the samples (different places, soil types, 
management, among others), suggesting a high 
variability on NIRS reliability depending on soil 
sampling and processing, as well as intrinsic soil 
characteristics. This represents a limitation in the 
use of this method as it implies the development 

of specific calibration methods representing this 
variability.

NIR spectroscopy can be used for determining 
mineral concentrations due to the association 
between minerals and organic functional groups 
in the organic matrix. The near-infrared radiation 
is absorbed by various chemical bonds (e.g., C-H, 
O-H, N-H, CO, S-H, CH2, and C-C) causing the 
bonds to be bent, twisted, stretched, or scissored. 
However, near-infrared reflectance spectra of 
soil samples do not contain distinct or sharp 
peaks that can be directly associated with specific 
constituents, particularly for dry samples.

CONCLUSIONS

The coefficient of determination in the 
calibration model obtained ranged from 0.76 to 
0.95, and 0.79 to 0.89, in Andisols and Ultisols, 
respectively. The RPD values varied between 2.1 
and 4.4 in Andisols, and between 2.2 and 3.1 in 
Ultisols. It was not possible to generate robust 
calibration models for Al Exch, Na and NH4

+ 
in Andisols, and Al Exch, Mg, NO3

- and Na in 
Ultisols.

The results showed that although some of 
the models developed have high coefficients of 
determination (R2) for the soil complex matrix, 
more research is required to generate universal 
models that could be applied to a wide range 
of soil types and characteristics. As starting 
point, this methodology would benefit from a 
greater number of samples from a wider spatial 
distribution, covering a variety of climatic and 
agricultural conditions to further improve the 
validation models obtained.
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