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ABSTRACT

Soil conservation is a critical aspect of sustainable agriculture. Damage to the physical, chemical, 
and biological structures of the soil decreases its fertility and disrupts native microbiota, leading 
to reduced nutrient availability, disruption of biological cycles (nitrogen and carbon), and a lack of 
protection against infections caused by fungal and bacterial pathogens. Therefore, the development 
of natural-origin fertilizers that are compatible with the soil microbiota and provide protective 
effects is essential. This work aimed to review the antifungal and antibacterial mechanisms of 
curcumin, a lipophilic bioactive compound of the Curcuma longa (turmeric) plant, and its potential 
application as a natural antimicrobial agent in agriculture. In general, the background information 
collected suggests that cell membrane weakening could allow the release of cellular material from 
microbial agents, through cell membrane rupture due to the inhibition of ergosterol synthesis, a key 
compound that allows maintaining the structure, fluidity, and permeability of the cell membrane. 
The review demonstrated that curcumin could have a potential practical application in agriculture 
due to its antifungal and antibacterial properties, with a more pronounced effect against fungi. 
This is attributed to the ability of curcumin to disrupts the fungal cell membrane and indirectly 
affect the proteins associated with it. Overall, this work highlights the promise of curcumin as a 
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green alternative to conventional agrochemicals, while emphasizing the need for further research to 
develop and expand its agricultural applications.

Keywords: Turmeric, natural-origin fertilizer, agricultural soil, fungal cell membrane, ergosterol.

INTRODUCTION

The control of agricultural infections using 
chemical pesticides is not recommendable 
due to the associated risks of environmental 
contamination and harm to human health, 
highlighting the need to develop greener, more 
sustainable solutions. The ecological management 
of pathogenic infections is important in crops, as 
most agricultural products are intended for direct 
consumption (Mishra and Singh, 2012). Soils 
with low fertility are a common problem in many 
regions of the world. According to the Food and 
Agriculture Organization of the United Nations 
(FAO, 2021), 25% of the world’s agricultural land 
shows signs of erosion. Intensive agricultural 
practices can exacerbate soil degradation, leading 
to nutrient depletion and a reduction of the natural 
soil microbiota. Consequently, the soil becomes 
more susceptible to harboring pathogens that 
cause plant infections, resulting in the decline of 
many commercially important crops (Antoniadis 
et al., 2017). Fungi are filamentous pathogens 
causing infections in plants and crops (Almeida 
et al., 2019). In general, these soil pathogens grow 
within the internal tissues of plant roots and can 
have negative effects on their growth. Plants with 
simple and poorly lignified roots may be more 
susceptible to pathogen attack. In addition, there 
are asymptomatic plant species that can serve 
as a source of inoculum for susceptible species 
(Malcom et al., 2013). 
The use of natural ingredients as an 

alternative to synthetic antimicrobial agents 
represents a promising strategy, particularly 
considering the growing global resistance to 
synthetic antimicrobials commonly used in 
plants protection. Polyphenols, found in various 
plants, offer a potential solution to this challenge 
(Alalwan et al., 2017). Specifically, curcumin, 
which is a polyphenol extracted from the rhizomes 
of the C. longa plant, is an interesting active plant 
ingredient (Mahmood et al., 2015). In fact, it is a 
lipophilic compound with recognized biological 
activities such as anti-inflammatory, antioxidant, 
and anti-proliferative effects, as suggested by 
animal studies (Gupta et al., 2012). Additionally, 
it serves as an important source of macro-, meso-
, and micronutrients (Jabborova et al., 2021). 
Curcumin has exhibited a broad spectrum of 
antimicrobial properties, including antibacterial 
(Adamczak et al., 2020) and antifungal effects 

(Murugesh et al., 2019), as well as the ability to 
decrease adhesion properties (O´Mahony et al., 
2005). In general, the mechanisms underlying 
the antimicrobial activity of curcumin is not fully 
understood; however, it has been suggested that 
the presence of methoxyl and hydroxyl groups 
could be responsible for its antimicrobial activity 
(Han and Yang, 2005). However, the low water 
solubility and chemical instability of curcumin 
make its application difficult. A study reported 
the development of a natural fertilizer enriched 
with turmeric to evaluate its effects on tomato 
plants and soil properties; the formulation had 
positive effects on the metabolic processes of soil 
quality, and key fruit characteristics (Carvajal-
Mena et al., 2023). Additionally, it has been found 
that curcumin can enhance its solubility and 
stability in emulsion systems (Leiva-Vega et al., 
2020). 
The use of curcumin represents a feasible 

and promising approach for the development 
and application of natural pesticides. Therefore, 
this work aims to review the antifungal and 
antibacterial mechanisms of curcumin to evaluate 
its potential application as a natural antimicrobial 
agent in agriculture.

Improvement of the solubility and 
bioavailability of curcumin for agricultural 
applications

In the context of human health, the application 
of curcumin is challenging due to its poor 
water solubility and low bioavailability, which 
result from its hydrophobic nature. Therefore, 
several studies have aimed to address these 
inherent limitations through the development of 
nanoparticles (Peng et al., 2018), nanosuspensions 
(Leiva-Vega et al., 2020) or complexes with 
cyclodextrins (Arya and Raghav, 2021).
However, the use of nanoparticles, 

nanosuspensions, or cyclodextrin complexes may 
not represent a viable alternative for improving 
the solubility and bioavailability of curcumin 
when the final application is on agricultural 
soils. Soil conditions are not necessarily favorable 
for the release of active compounds, and the 
preparation of these formulations requires 
complex laboratory equipment that is typically 
unavailable on farms.

A proposed solution to address the inherent 
limitations of curcumin is the search for 
new polymorphic varieties (Górnicka et al., 
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2023), which could show real applications in 
the agricultural area. These varieties could 
be developed as powder products for direct 
application on soils and require simple laboratory 
equipment for their preparation. According 
to Pandey and Dalvi (2019), polymorphism is 
the potential of a substance to exist in two or 
more crystalline forms with different molecular 
conformation. A polymorphic substance can 
exhibit different physical properties such as 
porosity, structure, density, and texture, which 
are key factors that may affect root development, 
water retention capacity, aeration, drainage, and 
soil workability, thereby directly affecting crop 
yield and plant health.
Turmeric powder exhibits polymorphism, 

a phenomenon in which its active compound, 
curcumin, can crystallize into different crystalline 
forms. Polymorphic substances share a similar 
chemical composition but possess distinct crystal 
structures characterized by differences in their 
crystallographic parameters. These differences 
can lead to changes in solubility, bioavailability, 
and release profiles, all of which may influence 
the half-life and efficacy of the active compounds 
(Prasad et al., 2020).
The most common polymorphic form of 

curcumin found in commercial products is form I. 
In contrast, the polymorphic form II can be obtained 
through the crystallization of the commercial 
product using the following methods: (i) 
crystallization with 4-hydroxypyridine in ethanol 
at room temperature, (ii) crystallization with 
dimethyl sulfoxide (DMSO) at room temperature, 
and (iii) crystallization from a saturated solution 
of the active compound in ethanol kept at 10°C for 
two days. Additionally, polymorphic form III can 
be obtained by crystallization from 4,6-dihydroxy-
5-nitropyrimidine (Górnicka et al., 2023; Sanphui 
et al., 2011). 

A curved or slightly twisted conformation in 
curcumin form I was detected. On both sides of 
its molecule, hydrogen bonds are formed between 
the phenolic groups of curcumin and adjacent 
molecules, resulting in the combination with a 
fourth curcumin molecule, to form a macrocyclic 
hydrogen-bonding ring. However, in forms II and 
III, this ring is absent due to their linear molecular 
conformation (Wan et al., 2020). In this regard, a 
study on the stability of polymorphic forms by 
crystallization in ethanol at room temperature 
for 24 h demonstrated the following: (i) in the 
case of form I, the chemical structure of the active 
compound remains stable and exhibits poor water 
solubility, and (ii) for the other polymorphism 
forms, the polymorphs are less stable; however, 
their water solubility can improve up to three 
times compared to form I (Sanphui et al., 2011). 

Soil pathogens 
Agricultural activities have led to significant 

environmental impacts, altering natural 
vegetation, disrupting biogeochemical cycles, and 
reducing soil biodiversity. These modifications 
caused by agricultural practices have resulted in 
species extinction rates that are 100 to 1,000 times 
higher than natural rates (Lewis and Maslin, 2015), 
primarily due to the increased prevalence of soil 
pests and pathogens (De Carvalho Mendes et al., 
2012). Soil diseases are commonly referred to as 
“microbiome diseases”, characterized by a loss of 
microbial diversity in the soil and, consequently, 
in the rhizosphere and endosphere of plants (Van 
Elsas et al., 2012). The synergistic interaction of 
pathogenic bacteria and fungi in the soil results 
in significant agricultural yield losses, increased 
production costs, and the overuse of synthetic 
antimicrobial agents, all of which contribute 
to soil degradation (Oerke, 2006; Bennett et al., 
2012).
The most common soil pathogens found in 

agricultural systems are presented in Tables 1 
and 2. Fungi are the main filamentous pathogens 
responsible for plant and crop diseases. Fungal 
diseases cause significant losses in agricultural 
harvest and food production. To colonize the 
plant and cause disease, some fungi kill their 
hosts and feed on dead material (necrotrophs), 
while others colonize living tissue (biotrophs) 
(Almeida et al., 2019).
Oomycetes are filamentous eukaryotic 

microorganisms that exhibit both saprophytic 
and pathogenic lifestyles. They can develop 
resistance to chemical treatments and/or 
overcome plant resistance genes, complicating 
disease management strategies (Larousse and 
Galiana, 2017).
Among soil bacteria, a small subset can colonize 

and infect plant roots. These include unicellular 
pathogenic bacteria whose survival and virulence 
depend on environmental conditions such as soil 
moisture, temperature, and carbon substrate 
availability. Certain bacterial species are highly 
sensitive to environmental fluctuations and can be 
inactivated by minor changes in soil conditions. 
In contrast, other species are remarkably resilient, 
tolerating extreme temperatures, desiccation, 
or nutrient scarcity. Additionally, some bacteria 
exhibit host specificity, selectively colonizing 
particular plant species or crops (Dion, 2010).
In general, soil pathogens typically colonize 

root tissues, where they disrupt plant growth and 
development. Plants with simple root systems and 
poorly lignified root structures are particularly 
prone to pathogen colonization. Furthermore, 
asymptomatic plant species (those harboring 
pathogens without displaying symptoms) can act 
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as reservoirs of inoculum, facilitating the spread 
of infection to susceptible species (Malcom et al., 
2013). In this regard, turmeric could be used in 
agriculture as a natural fertilizer that improves 
soil structure, water retention, and nutrient 
availability for plants, while it can also act as a 
natural insecticide and repellent against some 
pests. Its use as a natural fertilizer can contribute 
to sustainable agricultural production, reducing 
the use of hazardous chemicals (Fig. 1).

Antifungal mechanism of curcumin
Fungal infections and mycotoxin contamination 

pose a global threat to food and feed safety. 
Current hypotheses suggest that the antifungal 
activity of curcumin, the primary bioactive 
compound in turmeric, may be associated with 
alterations in fungal cell membrane properties 
and indirect effects on membrane-bound 
proteins (Lee and Lee, 2014), as observed in Fig. 
2. Specifically, these effects arise from disruption 

Table 1. Fungal pathogens found in agriculture.

                                                                                                        Affected
Species	                                             Symptoms	           product	         References
Fungal pathogens:			 
• Blumeria graminis	 Wheat powdery mildew	 Wheat	 Zhao et al. (2020)
• Botrytis cinerea	 Grey mould	 Grapes	 Williamson et al. (2007)
• Colletotrichum gloeosporioides	 Anthracnose	 Citrics	 Ashwini et al. (2013)
• Fusarium graminearum	 Fusarium head blight	 Grain cereals	 Brown et al. (2017)
• Fusarium oxysporum	 Fusarium wilt	 Tomato	 Singh et al. (2020)
• Fusarium solani	 Rot	 Strawberry	 De La Lastra et al. (2018)
• Magnaporthe oryzae	 Rice blight	 Rice	 Wang et al. (2018)
• Melampsora lini	 Flax rust	 Linseed	 Lawrence et al. (2007)
• Mycosphaerella graminícola	 Leaf blight	 Wheat	 Suffert and Sache (2011)
• Puccinia graminis	 Stem rust	 Grain cereals	 Gruner et al. (2020)
• Rhizoctonia solani	 Root rot	 Soybean	 Rahman et al. (2020)
• Sclerotinia sclerotiorum	 White mold	 Lettuce	 Young et al. (2004)
• Ustilago maydis	 Corn smut	 Corn 	 Redkar et al. (2017)
• Verticillium dahlia	 Wilting	 Pepper	 Veloso et al. (2015)
Oomycetes pathogens:			 
• Albugo candida	 White rust	 Corn	 Cevik et al. (2019)
• Hyaloperonospora arabidopsidis	 Downy mildew	 Sunflower	 Mestre et al. (2016)
• Phytophthora capsici	 Blight, rot	 Tomato	 Syed-Ab-Rahman et al. (2019)
• Phytophthora cinnamomi	 Root rot	 Avocado	 Andrade-Hoyos et al. (2020)
• Phytophthora infestans	 Blight	 Potato	 Goss et al. (2014)
• Phytophthora parasitica	 Root and stem rot	 Tomato	 Larousse et al. (2017)
• Phytophthora sojae	 Root and stem rot	 Soybean	 Kang et al. (2019)
• Plasmopara vitícola	 Downy mildew	 Grape	 Chitarrini et al. (2017)
• Pythium ultimum	 Water rot	 Potato	 Tsror (Lahkim) et al. (2021)

Table 2. Bacterial pathogens found in agriculture.

                                                                                                                      Affected
Species	                                 Symptoms	                                     product           References
Erwinia carotovora	 Rot	 Potato	 Salem et al. (2018)
Erwinia amylovora	 Fire blight, ooze production, necrosis	 Apple	 Schröpfer et al. (2021)
Erwinia stewartii	 Wilt	 Corn	 Doblas-Ibáñez et al. (2019)
Rasoltonia solanacearum	 Vascular wilt	 Tomato	 Aslam et al. (2017)
Xanthomonas campestris	 Foliar spots and blight	 Cabbage	 Vicente and Holub (2013)
Pseudomonas syringae	 Foliar spots and blight	 Stone fruits	 Popović et al. (2021)
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of fungal endomembrane systems (Hu et al., 
2017), and inhibition of ergosterol biosynthesis. As 
a critical sterol in fungal cell membranes (Chen et 
al., 2018), ergosterol plays a key role in maintaining 
membrane structure, fluidity, and permeability, 
while supporting essential cellular functions 
such as nutrient transport, environmental stress 
response, and cellular detoxification (Rodrigues, 

2018). Additionally, turmeric essential oil might 
suppress mycotoxin production by modulating 
gene expression in the aflatoxin biosynthetic 
pathway, specifically by downregulating the 
expression of aflM, aflO, aflP, and aflQ genes 
(Amminikutty et al., 2023).  

A study in F. graminearum culture demonstrated 
that the antifungal mechanism of curcumin 

Fig. 1. Agricultural application of turmeric and its active compound, curcumin.
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In other investigations, n-hexane and ethyl acetate extracts of turmeric at concentrations of 

1,000 mg L-1 and 500 mg L-1, respectively, demonstrated antifungal activity against B. cinerea, P. 

infestans, R. solani, Erysiphe graminis, and Puccinia recondita (Kim et al., 2003). Moreover, 

turmeric oil showed inhibitory effects against F. solani and Hirschmanniella oryzae with IC50 

values of 19.7 and 12.7 μg mL-1, respectively (Chowdhury et al., 2008). 

Studies across Candida species have demonstrated that curcumin exerts a dose-dependent 

inhibitory effect on (i) proteinase secretion, and (ii) plasma membrane P-type ATPase activity, 

significantly reducing intracellular pH levels (Khan et al., 2012). Additionally, curcumin 

suppresses hyphal development in Candida spp. under both liquid and solid culture conditions by 

targeting the TUP1 gene, a global transcriptional repressor of hyphal development (Sharma et al., 

2010), with analogous antifungal effects observed in F. solani (Akter et al., 2019). 
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involves the enzymatic downregulation of 
ergosterol biosynthesis. This disruption leads 
to the accumulation of ergosterol precursors, 
triggering oxidative stress via reactive oxygen 
species (ROS) generation and reduced ergosterol 
levels, which compromise membrane integrity and 
cellular transport. Furthermore, the study revealed 
that C. longa extract inhibits NADH oxidase and 
superoxide dismutase activity, thereby disrupting 
mitochondrial electron transport and ATP 
synthesis in the respiratory process (Chen et al., 
2018).

Multiple studies have demonstrated the 
antifungal potential of incorporating turmeric 
powder (0.8 to 1.0 g L-1). Furthermore, methanol 
extracts of turmeric exhibited antifungal activity 
against Cryptococcus neoformans and Candida 
albicans, with minimum inhibitory concentrations 
(MIC) of 128 and 256 𝜇g mL-1, respectively 
(Ungphaiboon et al., 2005). 

In other investigations, n-hexane and ethyl 
acetate extracts of turmeric at concentrations 
of 1,000 mg L-1 and 500 mg L-1, respectively, 
demonstrated antifungal activity against B. cinerea, 
P. infestans, R. solani, Erysiphe graminis, and Puccinia 
recondita (Kim et al., 2003). Moreover, turmeric oil 
showed inhibitory effects against F. solani and 
Hirschmanniella oryzae with IC50 values of 19.7 and 
12.7 μg mL-1, respectively (Chowdhury et al., 2008).

Studies across Candida species have 
demonstrated that curcumin exerts a dose-
dependent inhibitory effect on (i) proteinase 
secretion, and (ii) plasma membrane P-type ATPase 
activity, significantly reducing intracellular pH 
levels (Khan et al., 2012). Additionally, curcumin 
suppresses hyphal development in Candida spp. 
under both liquid and solid culture conditions by 
targeting the TUP1 gene, a global transcriptional 
repressor of hyphal development (Sharma et al., 
2010), with analogous antifungal effects observed 
in F. solani (Akter et al., 2019).

Another study on C. albicans showed that 
curcumin induces fungal cell death by modulating 
the expression of 348 genes involved in various cell 
death pathways, including cell cycle regulation, 
signal transduction, cell wall integrity, cellular 
metabolic processes, stress response, cytoskeletal 
organization, DNA synthesis/repair, hyphal 
development, mitochondrial function, and 
transcriptional/translational machinery. Notably, 
several genes linked to virulence, transport, and 
uncharacterized functions were also implicated 
(Kumar et al., 2014). Furthermore, the study 
demonstrated that curcumin disrupts membrane 
permeability, alters fungal cell morphology, and 
compromises cell wall integrity by targeting the 
MAP kinase pathway and calcineurin-dependent 
signaling cascades.  

Antibacterial mechanisms of curcumin
Current evidence suggests that the 

antibacterial mechanism of curcumin involves 
a combination of factors, including disruption 
of bacterial membrane integrity, inhibition of 
biofilm formation, and induction of oxidative 
stress (Suryanarayana et al., 2007; Tyagi et al., 
2015; Hamzah et al., 2020). Curcumin has also 
demonstrated efficacy against diverse bacterial 
pathogens, including multidrug-resistant strains. 
These properties position it as a potential adjuvant, 
with studies proposing its use  in combination 
therapy to synergistically enhance the activity of 
conventional antibiotics (Odo et al., 2023).
Specifically, Gram-negative bacteria 

exhibit lower susceptibility to curcumin compared 
to  Gram-positive species, because of  structural 
differences  in their cell walls,  particularly the 
lipopolysaccharide-rich outer membrane (Shlar 
et al., 2017). However, it has been demonstrated 
in Escherichia coli and Bacillus subtilis models that 
curcumin directly targets the catalytic domain of 
the filamenting temperature-sensitive mutant Z 
(FtsZ) protein, inhibiting its polymerization and 
disrupting prokaryotic cell division (Kaur et al., 
2010). Structural analyses reveal that curcumin’s 
α-terminal keto-enol group  and  terminal 
phenolic hydroxyl groups form hydrogen bonds 
with FtsZ’s catalytic site,  which is critical for 
its inhibitory activity (Kaur et al., 2010). These 
findings aligned with another study that reported 
that curcumin: (i) suppresses cytokinetic Z-ring 
assembly in B. subtilis, (ii) destabilizes FtsZ 
protofilaments, (iii) alters FtsZ’s secondary 
structure, and (iv) hyperactivates FtsZ’s GTPase 
activity—mechanisms collectively lethal to 
bacterial proliferation (Rai et al., 2008).

Curcumin  exhibits potent antibacterial 
activity  by  suppressing key virulence factors in 
Pseudomonas aeruginosa, including pyocyanin 
production, protease activity, and elastase 
secretion. Furthermore, it disrupts the quorum 
sensing (QS) system (a cell-cell communication 
mechanism mediated by autoinducer molecules), 
specifically reducing the synthesis of 3-oxo-N-
dodecanoyl-L-homoserine lactone (3-oxo-C12-
HSL) and N-butyryl-L-homoserine lactone (C4-
HSL). These QS autoinducers are essential for 
bacterial cell communication and regulation of 
gene expression (Rudrappa et al., 2008).

Current uses of turmeric in agricultural and 
heavy metal-contaminated soils

Applications of turmeric and its active 
compound, curcumin, in agricultural settings 
and heavy metal-contaminated soil remediation 
are summarized in Table 3. 

Existing research  indicates that the 
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antimicrobial properties of curcumin effectively 
protect plants against  phytopathogens, thereby 
reducing disease incidence and enhancing crop 
resilience (Rai et al., 2020). Curcumin has also 
been used to promote plant growth and yield in 
agricultural systems (Anas et al., 2024), and to 
remediate heavy metal-polluted soils, mitigating 
issues such as stunted growth, reduced biomass 
production, and excessive heavy metal uptake/
accumulation in plants (Ru et al., 2014). 
Additionally, curcumin has shown potential as 
an insecticide in mosquitoes, termites, ticks, and 
other insects. Reported effects include synergistic 
effect with known biopesticides against S. litura, 
a destructive agricultural pest that infests more 
than 120 host plant species (Veeran et al., 2017; 
Veeran et al., 2019; Cui et al., 2022). Furthermore, 
turmeric has shown potential as a plant growth 
inhibitor to treat widely distributed weeds like B. 
pilosa (Akter et al., 2018), thereby avoiding the use 
of synthetic herbicides.

Challenges in agricultural soil product 
formulation

Limitations in formulating agricultural soil 
products include the development of stable 
multi-ingredient formulations. Additional 
difficulties involve ensuring compatibility with 
other biological and chemical products and 
tailoring formulations to specific soil types and 
climate conditions (Fadiji et al., 2024).

Challenges related to the biologically active 
natural ingredients
•	 Biological viability: For microbial products, 
the primary challenge is keeping the beneficial 
organisms alive and robust during storage and 
after application.

•	 Stability: Biological ingredients can be 
degraded by natural enzymes in the soil or 
other components in the formulation, reducing 
their effectiveness over time. 

•	 Multi-active formulations: Combining 
multiple active ingredients, both chemical and 
biological, can increase complexity and create 
compatibility issues.

Challenges related to formulation and delivery
•	 Physical stability: Solid formulations may 

exhibit slow release rates, potentially delaying 
benefits, and achieving a homogeneous 
distribution of natural ingredients can be 
challenging.

•	 Environmental sensitivity: Product efficacy can 
be heavily influenced by local environmental 
factors, such as soil type, temperature, 
humidity, and the existing microbial 
population, all of which vary significantly 
across different regions. 

Challenges related to soil complexity
•	 Environmental variability: A single formulation 
may not perform consistently across different 
geographical locations due to variations in 
climate, soil chemistry, and ecology.

Table 3. Current uses of turmeric in agricultural applications and soil remediation for heavy metals.

Agricultural 
applications
Tomato crops 

Plant growth 
and productivity 
improvement 

Soil properties and 
productivity 

Soil quality 

Soil 
remediation
Reduction of the toxic 
effect of nickel (II) 
chloride on garlic 

Phytoremediation 

Adsorption and 
immobilization of 
copper 

-

Pesticide and herbicide
Synergistic effects 
with avermectin, 
diflubenzuron, and 
lambda-cyhalothrin 
against Spodoptera litura

Inhibitor of Bidens pilosa 
germination and growth 
in a dose-dependent way 

- 

- 
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•	 Intrinsic soil properties: The effectiveness 
of any product is limited by the existing soil 
conditions, such as compaction, erosion, or 
salinity, which can impact its ability to perform 
its intended function.

CONCLUSIONS

In this review, the antifungal and antibacterial 
mechanisms of curcumin, a lipophilic bioactive 
compound derived from C. longa were 
examined to establish a theoretical background 
for its potential application in agricultural soils as 
a sustainable strategy to mitigate pathogenic 
infections in plants and crops. 
Based on the evidence analyzed, curcumin 

demonstrates significant agricultural 
potential,  primarily due to its antifungal 
properties, which include disruption of fungal 
cell membranes, inhibition of ergosterol 
biosynthesis, and modulation of mycotoxin 
production. While its antibacterial activity is 
also notable, it appears less pronounced, as 
curcumin primarily targets bacterial membrane 
integrity and indirectly affects membrane-bound 
proteins. These findings highlight curcumin’s 
promise as a natural alternative to conventional 
agrochemicals; however, further research is 
needed to optimize its efficacy and application 
under greenhouse conditions.

Future research on turmeric and its bioactive 
compounds for agricultural and heavy metal 
remediation applications should prioritize:
1.	 Developing turmeric-based holistic biocontrol 

strategies  to reduce reliance on synthetic 
pesticides and fertilizers, targeting integrated 
pest and disease management.

2.	 Enhancing crop resilience to abiotic/biotic 
stressors (e.g., drought, salinity, pathogens) 
through curcumin-mediated modulation of 
stress-responsive pathways.

3.	 Quantifying the phytoremediation potential 
of turmeric in heavy metal-contaminated 
soils, with particular emphasis on rhizosphere 
microbial interactions and metal chelation 
mechanisms.

4.	 Evaluating the climate mitigation co-benefits of 
curcumin-enhanced crops, as improved plant 
health and metal-free biomass could foster 
carbon sequestration in agricultural systems.
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