

HYDROLATES AND ESSENTIAL OILS AFFECT *Varroa destructor* MITES IN *in vitro* ASSAYS

Noe Ríos-Argüelles^{1a}, Ivan Islas-Medina^{1b}, Gigi Margot Aguilar-Ambrocio^{1c}, Rafael Montes-Maldonado^{1d}, Sergio Soto Simental^{1e}, and Maricela Ayala-Martínez^{1f*}

^{1a} Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo de Bravo, Hidalgo, Mexico
<http://orcid.org/0009-0009-2839-421X>

^{1b} Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo de Bravo, Hidalgo, Mexico
<http://orcid.org/0009-0008-5362-1499>

^{1c} Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo de Bravo, Hidalgo, Mexico
<http://orcid.org/0009-0008-5362-1499>

^{1d} Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo de Bravo, Hidalgo, Mexico
<http://orcid.org/0009-0009-5338-796X>

^{1e} Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo de Bravo, Hidalgo, Mexico
<https://orcid.org/0000-0002-6923-0926>

^{1f} Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo de Bravo, Hidalgo, Mexico
<https://orcid.org/0000-0001-5554-218X>

* Corresponding author: ayalam@uaeh.edu.mx

ABSTRACT

The beekeeping industry is affected by infestation of hives by *Varroa destructor* mites, reducing both honey yield and quality. The objective of this study was to evaluate the effects of hydrolates or essential oils on the survival of *V. destructor* mites using *in vitro* assays. Six hydrolates obtained from *Lavandula angustifolia*, *Tithonia diversifolia*, *Ruta graveolens*, *Dalbergia palo-escrito*, *Populus alba*, and *Retama sphaerocarpa*, as well as two essential oils from *Lavandula angustifolia* and *Origanum vulgare* were used. Behavioral changes and survival rates were evaluated to determine the effects of hydrolates or plant-based essential oils on *V. destructor* mites. Results indicate that essential oils of *L. angustifolia* and *O. vulgare* at low concentration (1.25 μ L), as well as the hydrolate obtained from the flowers of *Retama sphaerocarpa* are effective against *V. destructor* without compromising bee survival. In conclusion, essential oils and hydrolates may serve as alternative treatments to reduce *V. destructor* mite infestations, particularly *R. sphaerocarpa* flower and *T. diversifolia* hydrolates, and 4 μ L of *O. vulgare* essential oil.

Keywords: *Dalbergia palo-escrito*, *Lavandula angustifolia*, *Populus alba*, *Ruta graveolens*, *Tithonia diversifolia*.

INTRODUCTION

Beekeeping is an important livestock activity because of its socioeconomic and ecological significance, contributing to foreign income (9.5% of global agricultural value) through the production of honey, pollen, propolis, and other beehive products (Schouten, 2021). In addition, this industry plays a fundamental role in maintaining the ecological balance due to pollination activity (Khalifa et al., 2021). Bees are often affected by varroasis, a disease caused by *Varroa destructor*, an ectoparasite that attacks both adult and young bees (Traynor et al., 2020). Noël et al. (2020) reviewed the impact of this ectoparasite at both individual and colony levels, reporting reduced body weight in young bees. The authors further noted that *Varroa* disrupts bee flight, neural processes, and immune responses, facilitating the spread of *Varroa* to other colonies and leading to honeybee losses.

The main acaricidal compounds used globally to control *Varroa* infestations are the pyrethroids fluvalinate and flumethrin (Yarsan et al., 2024). However, the inappropriate or indiscriminate use of these acaricides has caused mites to develop resistance, while their use can also contaminate honey and wax, potentially harming consumer health (Mitton et al., 2022). Bava et al. (2023) proposed an alternative approach for varroosis control by reviewing the use of essential oils as acaricides. Plant defense against pathogenic agents is based on the production of secondary metabolites with antimicrobial and antiparasitic activity (Fitch et al., 2022). Some techniques can be used to obtain these metabolites from plants, but one of the most commonly used is extraction by steam distillation of the leaves, flowers, stems, seeds, or roots of plants to obtain essential oils and produce an aqueous residue known as hydrolate (Tavares et al., 2022). Both extract types have antibacterial, antifungal, and antiparasitic properties related to the synthesis inhibition of certain essential components in microorganisms and can also prevent the fixation and colonization of viruses in cells (Sitarek et al., 2020). Many plants have biological activities, including oregano (*O. vulgare* Labiate), an aromatic plant with antioxidant, antimicrobial, antiparasitic, estrogenic, insecticidal, and antigenotoxic activities (Arcila-Lozano et al., 2004). Tavares et al. (2022) reviewed the potential uses of hydrolates and indicated that they have several biological properties and potential uses and applications in different industries. However, more research is needed to elucidate the effects of hydrolates.

There are many plants from which hydrolates can be obtained, including acahuil (*Tithonia*

diversifolia), a robust herbaceous and shrubby plant that shows biological activity and is capable of bioaccumulation, as well as antimarial, antibacterial and antifungal properties (Aja and Moteetee, 2017). Furthermore, studies have shown that Rue (*Ruta graveolens*) has antimicrobial and antioxidant properties, attributable to its rich content in secondary metabolites, such as coumarins, alkaloids, volatile oils, flavonoids, and phenolic acids, which are responsible for various biological effects (França-Orlanda et al., 2015; Pushpa et al., 2015). In addition, English lavender (*Lavandula angustifolia*) has been reported to have insecticidal, antibacterial, and antiviral properties (Basch et al., 2014). Poplar (*Populus alba*) has demonstrated antimicrobial activity (Sosa Castañeda et al., 2022) and some species of *Dalbergia* have been reported to contain flavonoids and sesquiterpenes with antioxidant and antibacterial activities (Singh et al., 2017). There is extensive information on the use of essential oils obtained from different plants (Bava et al., 2023), but data on the utilization of hydrolates are limited. In this study, we compare plant extracts previously used against *Varroa*, while most of the hydrolates tested here have not been applied to control varroosis. This study aimed to evaluate the effect of hydrolates and essential oils obtained from several aromatic plants on *V. destructor* using *in vitro* tests to suggest alternative treatments to mitigate varroosis.

MATERIALS AND METHODS

Plant material collection and preparation of essential oils and hydrolates

Origanum vulgare (Labiatae) was collected from Mineral del Chico (20°12'53" N, 98°43'50" W), while *Ruta graveolens*, *Dalbergia palo-escrito*, *Tithonia diversifolia* and *Populus alba* were obtained from Tulancingo de Bravo (20°5'9" N, 98°21'48" W). *Lavandula angustifolia* was obtained from Mineral de la Reforma (20°2'44.68" N, 98°43'15.88" W) in Hidalgo, Mexico. To obtain essential oils and hydrolates from all of these plants, aerial parts of the plants were air-dried while protected from sunlight (environmental conditions: 23 °C, 35% relative humidity) during five days. Subsequently, samples were ground in a Swissmex SW610350 grinder (Swissmex-Rapid, Lagos de Moreno, Jalisco, Mexico); the resulting powder was not sieved. The powder was used for hydrodistillation with a Niang apparatus (Dongguan Niangge Machinery Equipment Co, Beijing, China). Each powder was placed in the apparatus (50 g L⁻¹) for 4 h at 90 °C to obtain both hydrolates and essential oils.

In vitro tests

All experiments were performed in Nutrition Lab in the Instituto de Ciencias Agropecuarias, where the environmental conditions were 24 °C and 50% relative humidity. For each trial, approximately 500 live worker honeybees (*Apis mellifera*) and 5 combs with capped and uncapped brood were collected from 5 different hives in an apiary located in Tulancingo de Bravo, Hidalgo, Mexico (20°5'9" N, 98°21'48" W). The level of *V. destructor* infestation was determined using the Jong test (De Jong et al., 1982) to estimate the parasite load in the bee population. The experiments were performed as described by Mahmood et al. (2014). Briefly, three adult bees (*A. mellifera*) and three *V. destructor* mites were placed in glass Petri dishes (90 × 15 mm) with their respective treatments (2 mL of each extract). Hydrolates, essential oils, or substances used in Trials 1–4 were previously embedded on plates. In Trial 5, the plates were conditioned with a feeder containing 1 mL of honey diluted 1:1 with distilled water and incubated at 35 °C for 72 h, with observations recorded at 24, 48, and 72 h to determine the survival rate of the bees and mites.

Five in vitro trials were conducted, including two qualitative assessment. For Trial 1, seven treatments were performed: without alcohol, 70° ethyl alcohol, 0.5 g L⁻¹ thymol, and 1.25, 2.5, 5, 10 µL mL⁻¹ of *O. vulgare* essential oil with three repetitions. For Trial 2 (qualitative), the following 12 treatments were tested: without alcohol, 70° ethyl alcohol, 0.5 g mL⁻¹ evaporated thymol, 0.5 g L⁻¹ thymol loaded in a sponge, 0.5, 1, 2, 4 µL of *O. vulgare* essential oil, 12.5, 25, 50 and 100 µL mL⁻¹ of *O. vulgare* hydrolate. For Trial 3 (quantitative), 18 treatments were tested: alcohol-free, 70° ethyl alcohol, 0.5 g L⁻¹ thymol, 1 mg fluvalinate, 0.675, 1.25 µL mL⁻¹ of *O. vulgare* essential oil, as well as 25, 50 and 100 µL mL⁻¹ of hydrolates from *O. vulgare*, *R. graveolens*, *D. palo-escrito*, and *T. diversifolia*. For Trial 4 (quantitative), 16 treatments were tested: alcohol-free, 70° ethyl alcohol, 1 mg fluvalinate, 0.5 g L⁻¹ thymol, 0.5, 1, 2 µL mL⁻¹ of *O. vulgare* essential oil, as well as 25, 50 and 100 µL mL⁻¹ hydrolates from *O. vulgare*, *P. alba*, *T. diversifolia*. Finally, for Trial 5 (quantitative), 15 treatments were tested: alcohol-free, 70° ethyl alcohol, 1 mg fluvalinate, 0.5 g L⁻¹ thymol, 0.312 µL mL⁻¹ of *O. vulgare* essential oil, 0.650 µL mL⁻¹ *Lavandula angustifolia* essential oil, 100 µL mL⁻¹ of hydrolates from *L. angustifolia*, *P. alba*, *O. vulgare*, *T. diversifolia*, *R. sphaerocarpa* (flowers), *R. sphaerocarpa* (leaves), *R. sphaerocarpa* (pods), *R. sphaerocarpa* (stems), and *R. graveolens*). All trials were performed in triplicate.

Bee behavior was assessed through visual observation, inspecting live or dead individuals,

and noting whether the bee or mite was calm, aggressive, feeding, or exhibiting other behaviors. An individual was considered dead if, upon opening the Petri plate, it remained immobile and failed to respond to stimulation with a paintbrush. The bee and mite survival rate were determined as the number of live bees or mites divided by the total number of individuals, expressed per 100 bees or mites.

Statistical analysis

The first two trials were descriptive, using qualitative variables. The trial number three, four and five were performed using a completely randomized design. An analysis of variance was then carried out following a general linear model procedure, followed by Fisher's test to identify significant differences ($P < 0.05$) among the treatments. The following statistical model was used:

$$Y_{ij} = \mu + \beta_i + \varepsilon_{ij},$$

where Y_{ij} = dependent variable, μ = mean of the variable, β_i = the fixed effect of the i th bee or mite in the group, and ε_{ij} = experimental error associated with the observation Y_{ij} .

All analyses were performed using Minitab version 20.3.

RESULTS

Before performing the in vitro trials, a Jong test was conducted to confirm the presence of *Varroa* infestation. The results of Trial 1 are listed in Table 1. Exposure to 10 and 20 µL of *O. vulgare* essential oil had a detrimental effect on bees: they exhibited aggressive behavior immediately after exposure and died within minutes, accompanied by darkening of the body. After 24 h, similar effects were observed with 5 µL of *O. vulgare* essential oil. In contrast, bees treated with thymol, ethyl alcohol, or 2.5 µL of *O. vulgare* essential oil exhibited normal behavior, remaining calm and feeding.

In Trial 2, results showed that the inclusion of *O. vulgare* essential oil at concentrations of 0.5, 1, 2 and 4 µL allowed bees to remain alive until the 72-h time point, while *V. destructor* died within 24 h. In contrast, when *O. vulgare* hydrolate was applied at concentrations of 25, 50, 100, and 200 µL, bees also survived until 72 h, while *V. destructor* died after 72 h, indicating that this hydrolate has a less pronounced effect on *V. destructor* (Table 2).

In Trial 3, the treatment with 2.5 µL of *O. vulgare* essential oil had the greatest effect ($P < 0.05$) on bee survival, followed by the treatments with

Table 1. Behavior of *A. mellifera* in vitro following exposure to *Origanum vulgare* essential oil.

Treatment	Observation of bees	
	0 h	24 h
Without alcohol	Calm, feeding	Alive, normal behavior
70° Alcohol	Calm, feeding	Alive, normal behavior
Evaporated thymol	Calm, feeding	Alive, normal behavior
2.5 μ L	Calm, feeding	Alive, normal behavior
5 μ L	Calm, feeding	All bees died
10 μ L	Black color, aggressive and dead	All bees died
20 μ L	Black color, aggressive and death	All bees died

Table 2. Behavior of *A. mellifera* and *V. destructor* in vitro following exposure to *Origanum vulgare* essential oil and hydrolate.

Treatment	24 h		48 h		72 h	
	Bee	Varroa	Bee	Varroa	Bee	Varroa
Without alcohol	A	A	A	A	A	A
Evaporated thymol	A	A	A	A	A	A
Thymol in sponge	A	D	A	D	A	D
70° Alcohol	A	A	A	A	A	A
<i>O. vulgare</i> essential oil, 0.5 μ L	A	D	A	D	A	D
<i>O. vulgare</i> essential oil, 1 μ L	A	D	A	D	A	D
<i>O. vulgare</i> essential oil, 2 μ L	A	D	A	D	A	D
<i>O. vulgare</i> essential oil, 4 μ L	A	D	A	D	A	D
<i>O. vulgare</i> hydrolate, 25 μ L	A	A	A	A	A	D
<i>O. vulgare</i> hydrolate, 50 μ L	A	A	A	A	A	D
<i>O. vulgare</i> hydrolate, 100 μ L	A	A	A	A	A	D
<i>O. vulgare</i> hydrolate, 200 μ L	A	A	A	A	A	D

A=Alive; D=Dead.

fluvalinate, 200 μ L of *D. palo-escrito* hydrolate, and thymol (Table 3). This former treatment produced the same survival rates ($P>0.05$) among the bees as with *O. vulgare* and *R. graveolens* hydrolates, presenting greater ($P<0.05$) survival rates than 1.25 μ L *O. vulgare* essential oil and *T. diversifolia* hydrolate at concentrations of 50, 100 and 200 μ L. Regarding *V. destructor*, its survival rate was lower with fluvalinate and *O. vulgare* essential oil, followed by thymol and 50 μ L of hydrolates from aromatic plants, with the highest survival rates occurring with 200 μ L of hydrolates from aromatic plants (*O. vulgare*, *T. diversifolia*, *D. palo-escrito* and *R. graveolens*).

The results of Trial 4 are shown in Table 4. At 72 h, fluvalinate significantly decreased ($P<0.05$) the survival rate of *V. destructor* by up to 11%, but also negatively affected the survival of *A. mellifera* by up to 22%. A similar pattern was

observed with 2 or 4 μ L of *O. vulgare* essential oil. In contrast, exposure to thymol and 200 μ L of hydrolates from *O. vulgare*, *P. albus*, and *T. diversifolia* reduced *V. destructor* survival without affecting *A. mellifera*.

In Trial 5, results show that at 72 h, fluvalinate effectively eliminated *V. destructor*, while thymol, 1.25 μ L of *O. vulgare* essential oil, and 200 μ L of *R. sphaerocarpa* flower hydrolate were similarly effective against the mite, without affecting bees (Table 5).

DISCUSSION

Controlling *V. destructor* is crucial because this pest is a major barrier to sustaining a profitable beekeeping industry. One promising strategy involves the use of natural extracts obtained from plants. Topal et al. (2020) demonstrated

Table 3. In vitro survival rates for *A. mellifera* and *V. destructor* following exposure to different aromatic plants.

Treatment	Survival Rates %	
	Bees	<i>Varroa destructor</i>
Without alcohol	100.00a	100.00a
70° Alcohol	91.67a	100.00a
Thymol	86.67ab	42.33b
Fluvalinate	66.67bc	0.00 d
<i>O. vulgare</i> essential oil, μ L		
1.25	100.00a	6.67d
2.5	58.33d	3.67d
<i>O. vulgare</i> hydrolate, μ L		
50	83.33b	46.67b
100	85.00b	33.33c
200	85.00b	26.67c
<i>T. diversifolia</i> hydrolate, μ L		
50	100.00a	60.00b
100	100.00a	33.33c
200	100.00a	26.67c
<i>D. palo-escrito</i> hydrolate, μ L		
50	85.00b	60.00b
100	78.33bc	33.33c
200	73.33cd	26.67c
<i>R. graveolens</i> hydrolate, μ L		
50	93.33a	53.33b
100	78.33b	53.33b
200	64.00b	40.00b
SEM	12.19	13.41

that aromatic plants can be used to treat bee diseases; however, it is important to consider that even natural products may exert toxic effects on honeybees. Our observations corroborated this risk: exposure to *O. vulgare* essential oil at concentrations of 5, 10 and 20 μ L resulted in 100% bee mortality (Table 1). This effect is likely attributable to bioactive compounds such as thymol, carvacrol, or other terpenoids, which may interfere with the central nervous system of *A. mellifera* as the antennae and sensory-olfactory organs contain nervous receptors (Blenau et al., 2012). Consistent with our findings, Pohorecka (2004) reported that the application of *O. vulgare* essential oil produced honeybee mortality exceeding 80%. Additionally, Glavan et al. (2020), using carvacrol and thymol, evidenced that 5% carvacrol and 1% thymol resulted in 100 and 45% bee mortality, respectively. Albo et al. (2003) reported acute oral toxicity in adult honeybees caused by essential oils in vitro, with the highest mortality rate occurring with 5, 3, 2 and 8 μ g per bee for savory, thyme, lemongrass, and oregano,

respectively. However, Lin et al. (2019) found that even at the maximum dosage, plant oil induced only approximately 20% mortality in honeybees.

In Trial 2, survival rates for *A. mellifera* were not affected when the dosages of *O. vulgare* essential oil were reduced, although the acaricidal effect was observed until the 24 h time point. Even though this trial did not measure percentage mortality, a study by Romo-Chacon et al. (2016) found that the effectiveness of pure oregano essential oil at doses of 1.16 and 1.5 μ L ranged between 57 and 74%, suggesting that oregano essential oil can be used as a viable alternative to acaricides in an effort to control *V. destructor*. Therefore, the use of *O. vulgare* hydrolates warrants consideration, as no significant differences were observed ($p>0.05$) with the essential oil since *A. mellifera* survived for up to 72 h, while *V. destructor* survival was reduced. This shows that hydrolates may act more slowly. Supporting this, Iglesias et al. (2022) reported that *Humulus lupulus* hydrolates can affect *V. destructor*, likely due to their chemical composition, such as β -caryophyllene and

Table 4. In vitro survival rates for *A. mellifera* and *V. destructor* following exposure to *O. vulgare* essential oil and *O. vulgare*, *P. albus* and *T. diversifolia* hydrolates.

Treatment	% Survival Rates					
	<i>A. mellifera</i>			<i>Varroa destructor</i>		
	24 h	48 h	72 h	24 h	48 h	72 h
Without alcohol	89.66a	78.00a	78.00 a	77.66a	66.66ab	66.66ab
70° Alcohol	89.00a	89.00a	89.00 a	78.00a	67.00ab	61.33ab
Thymol	80.66a	69.66a	69.66a	66.66a	66.66ab	66.66ab
Fluvalinate	77.66b	22.00b	22.00b	11.00b	11.00b	11.00b
<i>O. vulgare</i> essential oil, μ L						
1	89.00a	89.00a	89.00a	41.66a	33.33b	33.33b
2	78.00a	33.33b	33.33b	11.00b	11.00b	11.00b
4	38.66b	30.33b	30.33b	0.00b	0.00b	0.00b
<i>O. vulgare</i> hydrolate, μ L						
50	100.00a	100.00 a	100.00a	89.00a	55.66ab	55.66ab
100	100.00a	78.00 a	78.00a	89.00a	22.33b	11.00b
200	78.00a	77.00 a	77.00a	55.66a	22.00b	11.00b
<i>P. albus</i> hydrolate, μ L						
50	100.00 a	100.00a	100.00a	67.00a	44.33ab	44.33ab
100	100.00 a	100.00a	100.00a	27.66b	27.66b	27.66b
200	89.66a	89.00a	89.00a	22.00b	22.00b	22.00b
<i>T. diversifolia</i> hydrolate, μ L						
50	100.00a	100.00a	100.00a	44.33a	44.33ab	33.00b
100	100.00a	100.00a	100.00a	55.66a	55.66ab	44.33ab
200	89.00a	89.00a	89.00a	22.33b	22.33b	16.66b
SEM	9.60	10.41	10.71	15.00	15.94	14.52

^{ab} Different letters indicate significant differences between rows. A t test ($p<0.05$) was used for comparison.

linalool, which contribute to mite inactivation without causing honeybee toxicity.

Among the components that destroy arthropods are monoterpenes, which are a component of the volatile essence present in both essential oils and hydrolates. This ability to affect mites is linked to neurotoxic activity through the inhibition of acetylcholinesterase and by acting antagonistically with octopaminergic receptors (Gimenez-Martinez et al. 2022). Products obtained from the hydrodistillation of aromatic plants at different concentrations have a less pronounced effect on bee physiology (Bava et al. 2023).

In Trial 3, a 100% survival rate was recorded among bees treated with *O. vulgare* essential oil at a concentration of 1.25 μ L, as well as with *T. diversifolia* hydrolates at concentrations of 50, 100 and 200 μ L. These values were significantly higher ($p < 0.05$) than those recorded for fluvalinate and *O. vulgare* essential oils at a concentration of 2.5 μ L. Although various studies have focused on the effects of essential oils on arthropods, according to Park and Tak (2016), the mode of action of

essential oils on insect pests involves neurotoxic effects, blocking of growth hormones, or killing by lipophilic oils. Neural effects were observed in both honeybees and *V. destructor* mites. Toxicity may also affect the respiration process of *V. destructor* mites, and some monoterpenes inhibit acetylcholinesterase (Umpierrez et al. 2011). It is possible that the volatile compounds obtained from plants, such as formic acid, affect the cellular respiratory chain of *V. destructor* mites (Vilarem et al. 2021).

Volatile organic compounds are widely used in nature by diverse organisms because of their roles in attraction, repellence, toxicity, and disorientation. The olfactory system is a biological sensor (Conchou et al. 2019) with a critical influence on parasite behavior, enabling *V. destructor* mite to recognize different developmental stages of honeybees (Ruffinengo et al. 2014). This parasite can differentiate between foragers and nurse bees solely through smell; thus, disrupting *V. destructor*'s orientation alters its behavior, providing a potential avenue

Table 5. In vitro survival rates for *A. mellifera* bees and *Varroa destructor* following exposure to *O. vulgare* and *L. angustifolia* essential oils, and *P. albus*, *T. diversifolia*, *R. sphaerocarpa*, *Ruta graveolens*, *L. angustifolia* and *O. vulgare* hydrolates.

Treatment	Survival Rates (%)					
	<i>A. mellifera</i>			<i>Varroa destructor</i>		
	24 h	48 h	72 h	24 h	48 h	72 h
Without alcohol	100.00a	100.00a	100.00a	100.00a	100.00a	100.00a
70% Alcohol	100.00a	100.00a	100.00a	100.00a	100.00a	100.00a
Thymol	100.00a	100.00a	100.00a	0.00e	0.00c	0.00c
Fluvalinate	88.88a	11.11d	0.00c	0.00e	0.00c	0.00c
Essential oil, 1.25 µL						
<i>O. vulgare</i>	100a	88.88ab	88.88a	11.11de	0.00c	0.00c
<i>L. angustifolia</i>	100a	88.88ab	66.66ab	44.44bc	0.00c	0.00c
Hydrolate, 200 µL						
<i>R. sphaerocarpa</i> flower	100a	100a	100a	0.00e	0.00c	0.00c
<i>R. sphaerocarpa</i> leaf	88.88a	88.88ab	77.77ab	44.44bc	0.00c	0.00c
<i>R. sphaerocarpa</i> stem	100a	100a	66.66ab	66.66b	0.00c	0.00c
<i>R. sphaerocarpa</i> pod	100a	88.88ab	55.55b	33.33cd	0.00c	0.00c
<i>Ruta graveolens</i>	100a	77.77bc	77.77ab	66.66b	0.00c	0.00c
<i>O. vulgare</i>	66.66b	66.66c	66.66ab	33.33cd	0.00c	0.00c
<i>L. angustifolia</i>	100a	100a	66.66ab	66.66b	0.00c	0.00c
<i>Populus alba</i>	88.88a	88.88ab	33.33bc	55.55bc	44.44b	33.33b
<i>Tithonia diversifolia</i>	100.00a	100.00a	33.33bc	0.00e	0.00c	0.00c

for direct control. *V. destructor* mites may detect the volatile compounds that constantly move from one bee to another within a colony, and thus disorientation would interfere with their infestation strategy (Reams and Rangel, 2022).

In Trial 4, essential oils and hydrolates were shown to affect *V. destructor* at concentrations that were safe for honeybees under in vitro conditions. Pătruică et al. (2023) evaluated the in vitro effects of manuka, mint, oregano, litsea and cinnamon extracts on mite and honeybee mortality rates and demonstrated that each active substance must be carefully evaluated, as the phytochemical compounds contained within these substances may affect honeybees. In this sense, Trial 5 identified suitable concentrations that killed *V. destructor* while not compromising bee survival. This coincides with the findings of Neira et al. (2004), who evaluated the use of lavender and bay essential oils and reported a 100% detachment of mites from their host *A. mellifera*, with a 25% decrease in survival rates for *V. destructor* without affecting bee survival rates. However, numerous factors can influence treatment efficiency, including concentration, application method, treatment duration, and colony environmental conditions. Reducing the use of chemical

substances is essential, as increasing *V. destructor* resistance also threatens bee survival rates. In this context, low concentrations of *O. vulgare* and *L. angustifolia* essential oils, as well as *R. sphaerocarpa* flower hydrolate, appear to be the most effective options against *V. destructor* without adversely affect bees. This study represents an exploratory research, proving a foundation for identifying novel compounds in hydrolates of some of the tested plants and, ultimately, proposing new strategies for *V. destructor* control.

CONCLUSIONS

The essential oils and hydrolates, particularly *R. sphaerocarpa* flower and *T. diversifolia* hydrolates, and 4 µL of *O. vulgare* essential oil, show promise as alternative treatments for reducing *V. destructor* infestations. However, further research is needed to optimize delivery methods for safe and effective application within beehives.

ACKNOWLEDGEMENTS

The authors would like to thanks to personnel of the Instituto de Ciencias Agropecuarias (Mexico) for their collaboration in the development of this

project. Special thanks to beekeeper I.N. Rangel Jurado for providing bees and *Varroa*.

Author contributions

Conceptualization: Noe Ríos-Argüelles, Ivan Islas-Medina, Gigi Margot Aguilar-Ambrocio, Rafael Montes-Maldonado, Sergio Soto Simental, and Maricela Ayala-Martinez; Methodology: Noe Ríos-Argüelles, Ivan Islas-Medina, Gigi Margot Aguilar-Ambrocio, Rafael Montes-Maldonado, Sergio Soto Simental, and Maricela Ayala-Martinez; Results and discussion: Noe Ríos-Argüelles, Sergio Soto Simental, and Maricela Ayala-Martinez. All authors reviewed and approved the final version of the manuscript before submission.

LITERATURE CITED

Ajao, A.A., and A.N. Moteetee. 2017. *Tithonia diversifolia* (Hemsl) A. Gray. (Asteraceae: Heliantheae), an invasive plant of significant ethnopharmacological importance: A review. *S. Afr. J. Bot.* 113:396-403. <https://doi.org/10.1016/j.sajb.2017.09.017>

Albo, G., C. Henning, J. Ringuelet, F. Reynaldi, M. De Giusti, and A. Alippi. 2003. Evaluation of some essential oils for the control and prevention of American Foulbrood disease in honey bees. *Apidologie* 34:417- 27. <https://doi.org/10.1051/apido:2003040>

Arcila-Lozano, C.C., G. Loarca-Piña, S. Lecona-Uribe, and E. González de Mejía. 2004. Oregano: properties, composition and biological activity. *Arch. Latinoam. Nutr.* 54(1):100-111. https://ve.scielo.org/scielo.php?pid=S0004-06222004000100015&script=sci_abstract&tlang=en

Basch, E., I. Foppa, R. Liebowitz, J. Nelson, M. Smith, D. Sollars, and C. Ulbricht. 2014. Lavender (*Lavandula angustifolia* Miller). *J. Herb. Pharmacother.* 4(2):63-78. https://doi.org/10.1080/J157v04n02_07

Bava, R., F. Castagna, E. Palma, M. Marrelli, F. Conforti, V. Musolino, C. Carresi, C. Lupia, C. Ceniti, and B. Tilocca. 2023. Essential oils for a sustainable control of honeybee varroosis. *Vet. Sci.* 10(5):308. <https://doi.org/10.3390/vetsci10050308>

Blenau, W., E. Rademacher, and A. Baumann. 2012. Plant essential oils and formamidines as insecticides/acaricides: what are the molecular targets? *Apidologie* 43: 334-347. <https://doi.org/10.1007/s13592-011-0108-7>

Conchou, L., P. Lucas, C. Meslin, M. Proffit, M. Staudt, and M. Renou. 2019. Insect odor scapes: from plant volatiles to natural olfactory scenes. *Front. Physiol.* 10:972. <https://doi.org/10.3389/fphys.2019.00972>

De Jong, D., R.A. Morse, and G.C. Eickwort. 1982. Mite pests of honey bees. *Annu. Rev. Entomol.* 27(1): 229-252.

Fitch, G., L.L. Figueroa, H. Koch, P.C. Stevenson, and L.S. Adler. 2022. Understanding effects of floral products on bee parasites: mechanisms, synergism, and ecological complexity. *IJP:PAW* 17:244-256. <https://doi.org/10.1016/j.ijppaw.2022.02.011>

França-Orlanda, J.F., and A.R. Nascimento. 2015. Chemical composition and antibacterial activity of *Ruta graveolens* L. (Rutaceae) volatile oils, from São Luís, Maranhão, Brazil. *S. Afr. J. Bot.* 99:103-106. <https://doi.org/10.1016/j.sajb.2015.03.198>

Giménez-Martínez, P., C. Ramirez, G. Mitton, F. Meroi Arcerito, F. Ramos, H. Cooley, S. Fuselli, and M. Maggi. 2022. Lethal concentrations of *Cymbopogon nardus* essential oils and their main component citronellal on *Varroa destructor* and *Apis mellifera*. *Exp. Parasitol.* 238:108279. <https://doi.org/10.1016/j.exppara.2022.108279>

Glavan, G., S. Novak, J. Božič, and A.J. Kokalj. 2020. Comparison of sublethal effects of natural acaricides carvacrol and thymol on honeybees. *Pestic. Biochem. Phys.* 166: 104567. <https://doi.org/10.1016/j.pestbp.2020.104567>

Iglesias, A.E., G. Fuentes, G. Mitton, F. Ramos, C. Brasesco, R. Manzo, M. Maggi. 2022. Hydrolats from *Humulus lupulus* and their potential activity as an organic control for *Varroa destructor*. *Plants* 11(23): 3329. <https://doi.org/10.3390/plants11233329>

Khalifa, S.A., E.H. Elshafiey, A.A. Shetaia, A.A.A. El-Wahed, A.F. Algethami, S.G. Musharraf, M.F. AlAjmi, C. Zhao, S.H.D. Masry, and M.M. Abdel-Daim. 2021. Overview of bee pollination and its economic value for crop production. *Insects* 12(8):688. <https://doi.org/10.3390/insects12080688>

Lin, Z., X. Su, S. Wang, T. Ji, F.L. Hu, and H.Q. Zheng. 2020. Fumigant toxicity of eleven Chinese herbal essential oils against an ectoparasitic mite (*Varroa destructor*) of the honey bee (*Apis mellifera*). *J. Apic. Res.* 59(2):204-210. <https://doi.org/10.1080/00218839.2019.1688493>

Mahmood, R., S. Asad, S. Raja, A. ul Moshin, E.S. Wagchoure, G. Sarwar, N. Islam, and W. Ahmad. 2014. Control of *Varroa destructor* (Acari: Varroidae) in *Apis mellifera* (Hymenoptera: Apidae) by using plant oils and extract. *Pak. J. Zool.* 46(3):609-615. [https://zsp.com.pk/vol-46\[3\].html](https://zsp.com.pk/vol-46[3].html)

Mitton, G.A., F. Meroi Arcerito, H. Cooley, G. Fernández de Landa, M.J. Eguaras, S.R. Ruffinengo, and M.D. Maggi. 2022. More than sixty years living with *Varroa destructor*: a review of acaricide resistance. *Int. J. Pest Manag.* 1-18. <https://doi.org/10.1080/09670874.2022.2094489>

Neira, M., P. Heinsohn, A. Báez, y J. Fuentealba. 2004. Efecto de aceites esenciales de lavanda y laurel sobre el ácaro *Varroa destructor* Anderson & Truemann (Acari: Varroidae). *Agricultura Técnica* 64(3): 238-244. <http://dx.doi.org/10.4067/S0365-28072004000300003>

Noël, A., Y. Le Conte, and F. Mondet. 2020. *Varroa destructor*: how does it harm *Apis mellifera* honey bees and what can be done about it? *Emerg. Top. Life Sci.* 4(1):45-57. <https://doi.org/10.1042/ETLS20190125>

Park, Y.L., and J.H. Tak. 2016. Essential oils for arthropods pest management in agricultural production systems. In: V.R. Preedy (Ed.). *Essential oils in food preservation, flavor and safety*. Academic Press. London, UK. p. 61-70.

Pătruică, S., R.N. Lazar, G. Buzamăt, and M. Boldea. 2023. Economic benefits of using essential oils in food stimulation administrated to bee colonies. *Agriculture* 13(3):594. <https://doi.org/10.3390/agriculture13030594>

Pohorecka, K. 2004. Effect of standardized plant herb extracts on general condition of the honeybee (*Apis mellifera* L.). *Bull. Vet. Inst. Pulawy.* 48:415-419. <http://www.agro-article-8ef20494-8e34-4b55-bff4-0c84a9b41255>

Pushpa, H., N. Ramya-Shree, S.P. Shetty, and D.H. Ramesh. 2015. Screening of antimicrobial, antioxidant and anticancer activity of *Ruta graveolens*. *Adv. Biol. Res.* 9(4): 257-264. [http://www.idosi.org/abr/9\(4\)15/8.pdf](http://www.idosi.org/abr/9(4)15/8.pdf)

Reams, T., and J. Rangel. 2022. Understanding the enemy: a review of the genetics, behavior and chemical ecology of *Varroa destructor*, the parasitic mite of *Apis mellifera*. *J. Insect. Sci.* 22(1):18. <https://doi.org/10.1093/jisesa/ieab101>

Romo-Chacón, A., L.J. Martínez-Contreras, F.J. Molina-Corral, C.H. Acosta-Muñiz, C. Ríos-Velasco, A.P. de León-Door, and R. Rivera. 2016. Evaluation of oregano (*Lippia berlandieri*) essential oil and entomopathogenic fungi for *Varroa destructor* control in colonies of honey bee, *Apis mellifera*. *Southwest. Entomol.* 41(4): 971-982. <https://doi.org/10.3958/059.041.0427>

Ruffinengo, S.R., M.D. Maggi, S.R. Fuselli, F.G. de Piano, P. Negri, M.C. Brasesco, A. Satta, I. Floris, and M.J. Eguaras. 2014. Bioactivity of microencapsulated essentials oils on the ectoparasitic mite *Varroa destructor* (Acari: Varroidae) and perspectives of their use in the control of Varroosis. *Bull. Insectology* 67 (1): 81-86. <https://doi.org/10.3390/ijms21145105>

Schouten, C.N. 2021. Factors influencing beekeepers income, productivity and welfare in developing countries: a scoping review. *J. Apic. Res.* 60(2):204-219. <https://doi.org/10.1080/00218839.2020.1844464>

Singh, B., J.P. Singh, A. Kaur, and N. Singh. 2017. Phenolic composition and antioxidant potential of grain legume seeds: A review. *Food Res. Int.* 101:1-16. <http://dx.doi.org/10.1016/j.foodres.2017.09.026>

Sitarek, P., A. Merecz-Sadowska, T. Kowalczyk, J. Wieczfinska, R. Zajdel, and T. Śliwiński. 2020. Potential synergistic action of bioactive compounds from plant extracts against skin infecting microorganisms. *Int. J. Mol. Sci.* 21(14):5105. <https://doi.org/10.3390/ijms21145105>

Sosa-Castañeda, J., C.G. Manzanarez-Quin, R.D. Valdez-Domínguez, C. Ibarra-Zazueta, R.F. Osuna-Chávez, and P.Y. Castro Heredia. 2022. Antimicrobial activity of plants native to Sonora, Mexico, against pathogenic bacteria isolated from milk from cows diagnosed with mastitis. *Rev. Mex. Cien. Pecu.* 13(2):375-390. <https://doi.org/10.22319/rmcp.v13i2.6017>

Tavares, C.S., J.A. Gameiro, L.B. Roseiro, and A.C. Figueiredo. 2022. Hydrolates: A review on their volatiles composition, biological properties and potential uses. *Phytochem. Rev.* 21(5), 1661-1737. <https://doi.org/10.1007/s11101-022-09803-6>

Topal, E., M.C. Cipcigan, R.I. Tunca, M. Kösoğlu, and R. Mărgăoan. 2020. The Use of medicinal aromatic plants against bee diseases and pests. *Bee Studies* 12(1):5-11. <https://doi.org/10.51458/BSTD.2021.2>

Traynor, K.S., F. Mondet, J.R. de Miranda, M. Techer, V. Kowallik, M.A.Y. Oddie, P. Chantawannakul, and A. McAfee. 2020. *Varroa destructor*: A complex parasite, crippling honey bees worldwide. *Trends Parasitol.* 36(7):592-606. <https://doi.org/10.1016/j.pt.2020.04.004>

Umpiérrez, M.L., E. Santos, A. González, and C. Rossini. 2011. Plant essential oils as potential control agents of varroatosis. *Phytochem. Rev.* 10(2):227-244. <https://doi.org/10.1007/s11101-010-9182-0>

Vilarem, C., V. Piou, F. Vogelweith, and A. Vétillard. 2021. *Varroa destructor* from the laboratory to the field: Control, biocontrol and ipm perspectives—A review. *Insects*. 12(9):800. <https://doi.org/10.3390/insects12090800>

Yarsan, E., F. Yilmaz, S. Sevin, G. Akdeniz, B. Celebi, S.H. Ozturk, S.N. Ayikol, U. Karatas, H. Ese, and N. Fidan. 2024. Investigation of resistance against to flumethrin using against *Varroa destructor* in Türkiye. *Vet. Res. Commun.* 1-14. <https://doi.org/10.1007/s11259-024-10351-x>

