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ABSTRACT

Amaranthus species are extremely problematic weeds due to their aggressiveness and resistance, 
being Amaranthus palmeri S. Watson, Amaranthus retroflexus L., Amaranthus tuberculatus (Moq.) J. 
D. Sauer, and Amaranthus hybridus L. prominent worldwide. The present research aimed to study A. 
hybridus populations in Paraguay where the use of glyphosate and chlorimuron herbicides presented 
management challenges. This research was conducted in the municipalities of Corpus Christi and 
Hernandarias, Paraguay, in 2016, 2017, 2018, 2019, and 2020. Weed seeds with resistance indicators 
were collected, cultivated, and following a screening process, cultivated for seed production 
(heritability up to F2), and the seeds were collected to obtain the herbicide dose-response curve. The 
herbicides glyphosate and chlorimuron were tested in portions of 1/8, 1/4, 1/2, 1, 2, 4, and 8 times the 
recommended dose on the package inserts (720 g acid equivalent [ae] ha−1 and 20 g active ingredient 
[ai] ha−1, respectively). Among the A. hybridus populations evaluated in Paraguay, biotype from 
Hernandarias with multiple resistance to ALS-inhibiting (HRAC 2) and EPSPs-inhibiting (HRAC 
9) herbicides, and biotype from Corpus Christi with resistance to ALS-inhibiting herbicides (HRAC 
2) were found. Therefore, rotation and combination of herbicides, as well as integration with non-
chemical measures, are essential to control and prevent selection of resistant biotypes. Studies aimed 
to develop integrated weed management plans are essential for effective control. In countries like 
Paraguay, this becomes imperative because of the lack of research on this topic.
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INTRODUCTION

The high prolificacy, competitive ability, and 
resistance to treatments of Amaranthus species 
are a concern, especially palmer amaranth 
(Amaranthus palmeri S. Watson), redroot pigweed 
(Amaranthus retroflexus L.), and tall waterhemp 
(Amaranthus tuberculatus [Moq.] J. D. Sauer), 
and smooth pigweed (Amaranthus hybridus L.) 
(Meyer et al., 2015; Roberts and Florentine, 2022) 
being prominent weeds worldwide. In recent 
years, increased occurrence, and challenges 
in controlling smooth pigweed have been 
highlighted in South America. 

Smooth pigweed is native to America (Sauer, 
1967) and is sub-cosmopolitan (Costea et al., 
2004). It propagates through seeds, and a single 
plant can produce approximately 60,000 seeds 
(Weaver, 1984; Costea et al., 2004). Amaranthus 
species are resistant to several herbicides 
worldwide, mainly protoporphyrinogen oxidase 
(PPO), 5-enolpyruvyl-shikimate-3-phosphate 
(EPSP), and acetolactate synthase (ALS) inhibitors 
(Heap, 2023). 

Resistance to ALS-inhibiting herbicides in 
A. hybridus has been observed in neighboring 
Paraguay, like Brazil, where, there are cases of 
A. hybridus resistance to glyphosate (Resende 
et al., 2022), multiple resistance to glyphosate 
and chlorimuron (Heap, 2023), and resistance 
to chlorimuron and metsulfuron (Mendes et 
al., 2022). In Argentina, multiple resistance 
to glyphosate and ALS inhibitors has been 
highlighted (García et al., 2020). Therefore, 
monitoring resistance in plants and treatment 
using rotation and mixtures of herbicides, as 
well as integration with non-chemical measures, 
is essential to control and prevent selection of 
resistant biotypes (Meyer et al., 2015).

Amaranthus plants are extremely competitive 
and have adapted to grain crops (Korres et al., 
2019). Studies indicate that 4.6 plants m−2 of A. 
hybridus can reduce soybean yield by 25–30% 
(Toler et al., 1996). Considering the magnitude of 
the problem, it is essential to focus on integrated 
weed management involving a multiple set of 
effective practices (Harker et al., 2013; Soltani et 
al., 2023). This includes strategies that range from 
monitoring through phytosociological surveys 
and identification of resistance, which results 
in efficient agricultural control measures, such 
as cultural, mechanical, and chemical practices 
(Marochi et al., 2018; Albrecht et al., 2020a, 
Chauhan, 2020). For example, the combination 
of pre- and post-emergence herbicide application 
with a population of 247,000 soybean plants 
ha-1 was advantageous in the management 
of Amaranthus spp. (Butts et al., 2016). The 

association of cover crops with herbicides in the 
integrated management of A. hybridus was also 
effective (Bunchek et al., 2020).

Nevertheless, there are many challenges in 
weed management that Paraguay share, which 
emphasizes the need for further investigation 
for better control. Furthermore, the problems 
encountered in this region can be applicable 
throughout Latin America and serve as a study 
model to configure actions in all parts of the 
world. Paraguay has an area of 406,752 km², 
with approximately 31 million ha arable land, of 
which 3.7 million ha are cultivated with soybeans 
in the 2022-2023 growing season (Ministerio 
de Agricultura y Ganadería [MAG], 2022). In 
Paraguay, the first case of herbicide-resistant 
weed was reported in 1995 in Itapuá by Adolfo 
Benegas. It was reported Euphorbia heterophylla 
L. resistant to imazethapyr, an herbicide with an 
ALS-inhibiting mode of action (Heap, 2023).

The objective of this study was to monitor 
and investigate the resistance of A. hybridus to 
herbicides, specifically to analyze cases with 
an indication of multiple resistance. The work 
was conducted in conjunction with researchers, 
technicians, and farmers from Paraguay, a 
country bordering Brazil, which faces similar 
weed management challenges but lacks extensive 
weed science research.

MATERIAL AND METHODS

Amaranthus hybridus monitoring and screening
Amaranthus hybridus seeds were collected 

during the 2018–2019 and 2019–2020 growing 
seasons. Seed collection followed the methodology 
proposed by Burgos et al. (2013). Seeds were 
collected after herbicide application from one or 
more plants with similar characteristics, at specific 
control failure points. Collections were carried 
out on different farms in the regions studied, 
based on information received from farmers and 
agronomists, with only one collection per plot.

In 2020, screening was performed to select 
susceptible and resistant biotypes to be used for 
determining herbicide dose-response curves. 
Plants were cultivated in greenhouses in the 
Districts of Hernandarias and Corpus Christi, 
Department of Alto Paraná and Canindeyú, 
Paraguay, respectively.
Seeds of the first generation (F1) were sown and 

thinned after emergence, leaving one seedling 
per pot, with six replicates. The herbicides 
tested in F1 were glyphosate (Roundup Full® II, 
Monsanto Paraguay S.A., Asunción, Paraguay) 
at dose of 720 g acid equivalent [ae] ha−1 and 
chlorimuron (Poker® 75 WG, Glymax Paraguay 
S.A., Hernandarias, Paraguay) at dose of 20 g 
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active ingredient [ai] ha−1. The experimental units 
were pots containing 1 dm−3 of vermiculite under 
greenhouse conditions. 

Treatments were applied to plants with four 
leaves, one plant per pot. All herbicides were 
applied using a CO2 pressurized backpack 
sprayer equipped with four flat-fan nozzles 
AIXR 110.015 (TeeJet Technologies, Wheaton, IL) 
at a pressure of 240 kPa and a speed of 1 ms−1, 
delivering an application volume equivalent 
to 200 L ha−1. The pots were removed from the 
greenhouse for application and brought back 1 h 
after application. The weed control was evaluated 
at 28 days after application (DAA) of herbicides, 
through visual inspection (0 for no injuries, up to 
100% for plant death) (Velini et al., 1995).

Dose-response curve
After screening, two biotypes (susceptible and 

suspected resistance) were selected for the dose-
response curve (F2 generation). The experiments 
were conducted using a completely randomized 
design with six replicates. The sowing process, 
growing conditions and growth stage for 
herbicide application were the same as those 
used in screening.

The treatments consisted of glyphosate (0, 
90, 180, 360, 720; 1,440; 2,880 and 5,760 g ae ha−1; 
Roundup Full® II) or chlorimuron (0, 2.5, 5, 10, 20, 
40, 80, and 160 g ai ha−1; Poker® 75 WG) combined 
with 0.5% (v/v) emulsifiable mineral oil. The 
doses used represent the normal field doses at 0, 
1/8, 1/4, 1/2, 1, 2, 4 and 8 times.

The shoots were collected at 28 DAA of 
herbicides to determine dry mass. Plants were cut 
at the soil surface, collected in paper bags, oven-
dried at 70 °C for 4 d (to constant mass), and 
then weighed. Data were subjected to analysis of 
variance and regression, the SigmaPlot® 13 (Systat 
Software Inc.) was used. When significant, were 
fitted to the non-linear logistic regression model 
proposed by Streibig (1988):
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Based on the values of GR50, we calculated the 
resistance factor (RF = GR50 of the resistant 
biotype/GR50 of the susceptible biotype). The RF 
expresses the number of times the dose required 
to control 50% resistant biotypes is greater than 
the dose to control 50% susceptible biotypes 
(Burgos et al., 2013). Experimental procedures, 
the development of the dose-response curve and 
the statistical analysis were adopted in line with 
the current literature and recent publications 
(Zobiole et al., 2019; Albrecht et al., 2020b; 
Albrecht et al., 2020c). 

RESULTS AND DISCUSSION

After F2, A. hybridus resistance to glyphosate 
and chlorimuron was identified in the Paraguayan 
locations. The biotypes were identified in 
Hernandarias, Alto Paraná department, and 
Corpus Christi, Canindeyú department, in areas 
cultivated with soybean and maize (Table 1).  For 
the resistant biotype located in Hernandarias, 
the GR50 was 257.34 g ae ha-1 with RF of 2.56 for 
glyphosate, while for chlorimuron it was 16.79 g 
ai ha-1 with RF of 20.78 (Table 2).

For the resistant biotype located in Corpus 
Christi, the GR50 was 26.33 g ai ha-1 with RF of 
12.4 for chlorimuron, while it was 142.86 g ae 
ha-1 with RF of 1.06 for glyphosate (Table 2). For 
a biotype to be considered resistant, the FR must 
be >1 and the growth reduction by 80 (GR80) > 
than the recommended dose of the herbicide 
(Takano et al., 2017). Even with FR >1, GR80 did 
not exceed the recommended dose (720 g ae ha-1) 
of glyphosate. This does not point to agronomic 
resistance but shows a low level of resistance. 

This proves the resistance of the biotypes in 
the F2 generation after evaluation. Biotype from 
Hernandarias with multiple resistance to ALS 
- (HRAC 2) and EPSPs - (HRAC 9) inhibiting 
herbicides, and biotype from Corpus Christi 
with resistance to ALS - (HRAC 2) inhibiting 
herbicides were found. After statistical analysis 
and application of non-linear regression, models 
and graphs (Fig. 1) were generated as commonly 
described in the literature (Burgos et al., 2013; 
Takano et al., 2016; Takano et al., 2017; Zobiole 
et al., 2019; Albrecht et al., 2020b; Albrecht et al., 
2020c).
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Table 1. Geographical location of A. hybridus seed collection areas with proven resistance.

     Location                   Susceptibility	        Coordinates	 Agricultural crops
1. Hernandarias,	  Resistant	 25°02’58”S 54°54’12”W	
    Alto Paraná	 Susceptible	 25°00’01”S 54°52’59”W	 Soybean and maize
2. Corpus Christi,	  Resistant	 24°26'16"S 55°34'42"W	
    Canindeyú	 Susceptible	 24°27’48"S 55°39’50"W	

Table 2. 	Herbicide dose for 50% growth reduction (GR50) and the resistance factor (RF) for A. 
hybridus.

     Location	                     Glyphosate	        Chlorimuron
	 GR50	 RF	 GR50	 RF
1. Hernandarias,	 100.66	 -	 0.81	 -
    Alto Paraná	 257.34	 2.56	 16.79	 20.78
2. Corpus Christi,	 142.86	 -	 2.12	 -
    Canindeyú	 151.80	 1.06	 26.33	 12.40

Doses in g active ingredient ha−1 for chlorimuron and g acid equivalent ha−1 
for glyphosate.
RF = GR50 of the resistant biotype/GR50 of the susceptible biotype.
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Resistance to ALS-inhibiting herbicides in 
A. hybridus has been observed in neighboring 
Paraguay, like Brazil, where there are cases of 
A. hybridus resistance to glyphosate (Resende 
et al., 2022), multiple resistance to glyphosate 
and chlorimuron (Heap, 2023), and resistance 
to chlorimuron and metsulfuron (Mendes et 
al., 2022). In Argentina, multiple resistance 
to glyphosate and ALS inhibitors has been 
highlighted (García et al., 2020). To our 
knowledge, the present multiple resistance case 
is the first report for this species in Paraguay.

Regarding the mechanisms of resistance to 
the EPSPS (glyphosate) and ALS inhibitors, the 
triple substitution of amino acids TAP□IVS was 
identified in the resistant biotype of A. hybridus in 
Argentina (Perotti et al., 2019). Furthermore, the 
plants also showed increased EPSP expression 
compared to that in susceptible plants. A 
Ser653Asn substitution was found in the ALS 
sequence, explaining the cross-resistance pattern 
to the ALS-inhibiting families of herbicides 
(pyrimidyloxythiobenzoates, sulfonylureas, and 
triazolopyrimidines) (Garcia et al., 2020).

Amaranthus species are highly problematic 
weeds because of their aggressive dispersal and 
resistance. In recent years, there has an increase 
in the occurrence and difficulty in controlling A. 
hybridus. As previously indicated, Amaranthus 
species show resistance to several herbicides, 
mainly PPO, glyphosate, and ALS-inhibiting 
herbicides. Resistance gene flow is mediated 
by seeds, playing an important role in the 
dissemination of Amaranthus spp. herbicide 
resistant (Yanniccari et al., 2023). Therefore, 
rotation and combination of herbicides, as well 
as integration with non-chemical measures, 
are essential for controlling and preventing the 
selection of resistant biotypes (Braz and Takano, 
2022; Soltani et al., 2023). The combination of pre- 
and post-emergence herbicide application with 
a population of 247,000 soybean plants ha-1 was 
advantageous in the management of Amaranthus 
spp. (Butts et al., 2016). The association of 
cover crops with herbicides in the integrated 
management of A. hybridus was also effective 
(Bunchek et al., 2020).
Coffman et al. (2021) observed that the 

application of dicamba could be an alternative 
for the control of the PPO-resistant A. palmeri; 
however, lower levels of control were observed 
in the PPO-resistant population than in the 
susceptible population. Other studies have 
reported the use of glufosinate to control 
Amaranthus spp. (Hay et al., 2019, Browne et 
al., 2020), especially in sequential applications 
and management programs including synthetic 
auxins (Cuvaca et al., 2020), with better efficacy in 

young plants and cover crops.
A significant finding is the use of herbicides 

with residual effects that can be applied in the 
off-season, especially in the pre-sowing period of 
soybeans. Flumioxazin, metribuzin (De Sanctis 
et al., 2021; Houston et al., 2021), sulfentrazone + 
cloransulam (Houston et al. 2021), pyroxasulfone 
+ flumioxazin, pyroxasulfone, and acetochlor 
(Perkins et al., 2021) have shown good results in 
controlling Amaranthus spp.

Therefore, population monitoring is important 
for effective control. Monitoring weed resistance 
is a useful and essential practice to understand, 
identify, and quantify the frequency of resistant 
plants in advance (Schultz et al., 2015). Resistance 
monitoring studies have led to increased research 
and thus the development of new techniques for 
controlling resistant or tolerant plants (Rubione 
and Ward, 2016; Comont and Neve, 2021).

CONCLUSIONS

Among the A. hybridus populations evaluated 
in Paraguay, biotype from Hernandarias with 
multiple resistance to ALS-inhibiting (HRAC 
2) and EPSPs-inhibiting (HRAC 9) herbicides, 
and biotype from Corpus Christi with resistance 
to ALS-inhibiting herbicides (HRAC 2) were 
found. Therefore, rotation and combination 
of herbicides, as well as integration with non-
chemical measures, are essential to control and 
prevent selection of resistant biotypes.

Studies aimed to develop integrated weed 
management plans are essential for effective 
control. In countries like Paraguay, this becomes 
imperative because of the lack of research on this 
topic.
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